利用海洋重力场变化分析洋底板块运动

李倩倩, 鲍李峰, C.K. Shum. 2020. 利用海洋重力场变化分析洋底板块运动. 地球物理学报, 63(7): 2506-2515, doi: 10.6038/cjg2020N0436
引用本文: 李倩倩, 鲍李峰, C.K. Shum. 2020. 利用海洋重力场变化分析洋底板块运动. 地球物理学报, 63(7): 2506-2515, doi: 10.6038/cjg2020N0436
LI QianQian, BAO LiFeng, C. K. Shum. 2020. Altimeter-derived marine gravity variation studies the submarine plate tectonic motions. Chinese Journal of Geophysics (in Chinese), 63(7): 2506-2515, doi: 10.6038/cjg2020N0436
Citation: LI QianQian, BAO LiFeng, C. K. Shum. 2020. Altimeter-derived marine gravity variation studies the submarine plate tectonic motions. Chinese Journal of Geophysics (in Chinese), 63(7): 2506-2515, doi: 10.6038/cjg2020N0436

利用海洋重力场变化分析洋底板块运动

  • 基金项目:

    国家自然科学基金(41774022)和中国科学院基础前沿科学研究项目(ZDBS-LY-DQC028)联合资助

详细信息
    作者简介:

    李倩倩, 女, 1989年生, 中国科学院测量与地球物理研究所在读博士生, 主要从事测高重力场的应用等研究.E-mail:15072418205@asch.whigg.ac.cn

    通讯作者: 鲍李峰, 男, 1979年生, 研究员, 主要从事大地测量学和卫星测高等方面的研究.E-mail:baolifeng@whigg.ac.cn
  • 中图分类号: P228

Altimeter-derived marine gravity variation studies the submarine plate tectonic motions

More Information
  • 洋底板块运动是地球动力学和全球变化研究的重要内容.本文根据质量迁移与地球外部重力场变化的对应关系,利用不同时期测高资料推算的1995—2019全球海洋重力场变化结果,反演分析全球洋底板块运动特征.研究表明,板块汇聚边界、板块内无震海岭、海山群、断裂带等区域重力异常变化显著,而在板块离散边界无明显变化趋势;西南印度洋中脊、大西洋中脊、中印度洋中脊等地区重力异常垂直梯度变化显著,且在西太平洋俯冲带、部分海岭区域也存在明显变化,其空间分布与地形基本吻合.海洋重力场变化整体上准确反映了全球洋底板块构造运动.相较于重力异常变化反演结果,重力垂直梯度的变化能够更为准确地反映洋底板块运动特征,特别是在洋中脊区域,扩张速率越小,垂直重力梯度变化越显著.此外,详细讨论了测高海洋重力场不确定因素对洋底板块运动分析结果的影响,海面坡度改正是主要因素之一.

  • 加载中
  • 图 1 

    全球板块及地震火山分布示意图.黑色实线表示板块离散型边界,绿色实线表示汇聚型边界,蓝色实线表示守恒型边界,灰色圆圈代表全球主要大型地震分布(M≥7),红色火山标志表示全球火山分布,全球地震及火山主要分布在板块边界

    Figure 1. 

    The distribution of global plates, earthquakes and volcanoes. The black lines represent the plate divergent boundaries, the green lines represent the plate convergent boundaries and the blue lines is the conservative boundaries. The gray circles mean the earthquakes which magnitude larger than 7 and the red markers mean the volcanoes. The global earthquakes and volcanoes mainly distribute in the plate boundaries

    图 2 

    1995—2019年间测高重力异常的变化

    Figure 2. 

    The variation of the altimeter-derived gravity anomaly between 1995 and 2019

    图 3 

    测高重力异常变化的分布特征及其与板块运动的关系.黑色实线表示板块离散型边界,绿色实线表示汇聚型边界,蓝色实线表示守恒型边界,黑色虚线表示无震海岭和断裂带,黑色椭圆圈出幅度较大且分布杂乱的重力异常变化

    Figure 3. 

    The distribution of the altimeter-derived gravity anomaly variation and its relations with plate motions. The black lines represent the plate divergent boundaries, the green lines represent the plate convergent boundaries and the blue lines is the conservative boundaries. The black dotted lines show the aseismic ridges and the fault zones. The black ellipses show the gravity anomaly variations distributed randomly with higher values

    图 4 

    1995—2019年间垂直重力梯度的变化

    Figure 4. 

    The variation of the vertical gravity gradient between 1995 and 2019

    图 5 

    垂直重力梯度变化的分布特征及其与板块运动的关系.黑色实线表示板块离散型边界,绿色实线表示汇聚型边界,蓝色实线表示守恒型边界,黑色虚线表示无震海岭,黑色椭圆圈出幅度较大且分布杂乱的垂直重力梯度变化

    Figure 5. 

    The distribution of the vertical gravity gradient variation and its relations with plate motions. The black lines represent the plate divergent boundaries, the green lines represent the plate convergent boundaries and the blue lines is the conservative boundaries. The black dotted lines show the aseismic ridges and the fault zones. The black ellipses show the gravity anomaly variations distributed randomly with higher values

    图 6 

    重力场误差分布,其中白色椭圆表示误差较大的区域,该误差一般由洋流、涡流等海洋多样性引起,数据网站:ftp://topex.ucsd.edu/pub/archive/grav/

    Figure 6. 

    The error of marine gravity field. The white ellipses represent the larger error caused by ocean variability. The data can be download from: ftp://topex.ucsd.edu/pub/archive/grav/

    图 7 

    有效卫星高度1000 km的全球高度改正图,数据下载网址:ftp://topex.ucsd.edu/pub/global_VD_1min/DH.grd

    Figure 7. 

    Global map of height correction for the effective satellite altitude of 1000 km. The data is available by ftp at ftp://topex.ucsd.edu/pub/global_VD_1min/DH.grd

  •  

    Altamimi Z, Rebischung P, Métivier L, et al. 2016. ITRF2014:a new release of the international terrestrial reference frame modeling nonlinear station motions. Journal of Geophysical Research:Solid Earth, 121(8):6109-6131, doi:10.1002/2016JB013098.

     

    Andersen O B, Knudsen P, Berry P A M. 2010. The DNSC08GRA global marine gravity field from double retracked satellite altimetry. Journal of Geodesy, 84(3):191-199, doi:10.1007/s00190-009-0355-9.

     

    Andersen O B, Knudsen P, Kenyon S, et al, 2019. Evaluation of the Global Altimetric Marine Gravity Field DTU15: Using Marine Gravity and GOCE Satellite Gravity.//Freymueller J T, Sánchez L eds. International Symposium on Advancing Geodesy in a Changing World. Cham: Springer, 77-81, doi: 10.1007/1345_2018_52.

     

    Argus D F, Gordon R G, DeMets C. 2011. Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochemistry, Geophysics, Geosystems, 12(11):Q11001, doi:10.1029/2011GC003751.

     

    Ballard R D, Van Andel T H. 1977. Morphology and tectonics of the inner rift valley at lat 36°50'N on the Mid-Atlantic Ridge. GSA Bulletin, 88(4):507-530, doi:10.1130/0016-7606(1977)88〈507:MATOTI〉2.0.CO; 2.

     

    Bercovici D. 2003. The generation of plate tectonics from mantle convection. Earth and Planetary Science Letters, 205(3-4):107-121, doi:10.1016/s0012-821x(02)01009-9.

     

    Bettinelli P, Avouac J P, Flouzat M, et al. 2006. Plate motion of India and interseismic strain in the Nepal Himalaya from GPS and DORIS measurements. Journal of Geodesy, 80(8-11):567-589, doi:10.1007/s00190-006-0030-3.

     

    Brenner A C, Blndschadler R A, Thomas R H, et al. 1983. Slope-induced errors in radar altimetry over continental ice sheets. Journal of Geophysical Research:Oceans, 88(C3):1617-1623, doi:10.1029/JC088iC03p01617.

     

    Brown G. 1977. The average impulse responce of a rough surface and its applications. IEEE Journal of Oceanic Engineering, 2(1):67-74, doi:10.1109/JOE.1977.1145328.

     

    DeMets C, Gordon R G, Argus D F. 2010. Geologically current plate motions. Geophysical Journal International, 181(1):1-80, doi:10.1111/j.1365-246X.2009.04491.x.

     

    Dick H J B, Jian L, Hans S. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965):405-412, doi:10.1038/nature02128.

     

    Fairhead J D, Green C M, Odegard M E. 2001. Satellite-derived gravity having an impact on marine exploration. The Leading Edge, 20(8):873-876, doi:10.1190/1.1487298.

     

    Gripp A E, Gordon R G. 2002. Young tracks of hotspots and current plate velocities. Geophysical Journal International, 150(2):321-361, doi:10.1046/j.1365-246X.2002.01627.x.

     

    Hao T Y, Huang S, Xu Y, et al. 2008. Comprehensive geophysical research on the deep structure of Northeastern South China Sea. Chinese Journal of Geophysics (in Chinese), 51(6):1785-1796. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/cjg2.1313

     

    Hwang C, Chang E T Y. 2014. Seafloor secrets revealed. Science, 346(6205):32-33, doi:10.1126/science.1260459.

     

    Jin S G, Zhu W Y. 2003. Quantitative analysis of the slowing expansion in the Southern Hemisphere. Chinese Journal of Geophysics (in Chinese), 46(6):760-766. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200306006

     

    Kraszewska K. 2006. Determination of tectonic plate motion by the SLR (Satellite Laser Ranging) and GPS (Global Positioning System) techniques.//Proceedings of SPIE 6159, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments Ⅳ. Wilga, Poland: SPIE, U1590, doi: 10.1117/12.675037.

     

    Le Pichon X. 1968. Sea-floor spreading and continental drift. Journal of Geophysical Research, 73(12):3661-3697, doi:10.1029/JB073i012p03661.

     

    Le Pichon X, Heirtzler J R. 1968. Magnetic anomalies in the Indian Ocean and sea-floor spreading. Journal of Geophysical Research, 73(6):2101-2117, doi:10.1029/jb073i006p02101.

     

    Li J B, Ding W W, Gao J Y, et al. 2011. Cenozoic evolution model of the sea-floor spreading in South China Sea:new constraints from high resolution geophysical data. Chinese Journal of Geophysics (in Chinese), 54(12):3004-3015, doi:10.3969/j.issn.0001-5733.2011.12.003.

     

    Liang Y Y. 2014. The Magmato-tectonic Dynamic Model of the Central Southwest Indian Ridge(49°~51°E)-Research from fine Bathymetry Data (in Chinese). Beijing: Institute of Oceanology, Chinese Academy of Sciences.

     

    Lundgren P, Saucier F, Palmer R, et al. 1995. Alaska crustal deformation:finite element modeling constrained by geologic and very long baseline interferometry data. Journal of Geophysical Research:Solid Earth, 100(B11):22033-22045, doi:10.1029/95jb00237.

     

    Okubo S. 2010. Potential and gravity changes raised by point dislocations. Geophysical Journal International, 105(3):573-586, doi:10.1111/j.1365-246X.1991.tb00797.x.

     

    Prawirodirdjo L, Bock Y. 2004. Instantaneous global plate motion model from 12 years of continuous GPS observations. Journal of Geophysical Research:Solid Earth, 109(B8):B08405, doi:10.1029/2003JB002944.

     

    Ren J Y. 2008. An Introduction to Ocean Floor Tectonics (in Chinese). Wuhan:China University of Geosciences Press.

     

    Sandwell D T, Smith W H F. 2009. Global marine gravity from retracked Geosat and ERS-1 altimetry:Ridge segmentation versus spreading rate. Journal of Geophysical Research:Solid Earth, 114(B1):B01411, doi:10.1029/2008jb006008.

     

    Sandwell D T, Smith W H F. 2014. Slope correction for ocean radar altimetry. Journal of Geodesy, 88(8):765-771, doi:10.1007/s00190-014-0720-1.

     

    Sandwell D T, Harper H, Tozer B, et al. 2019. Gravity field recovery from geodetic altimeter missions. Advances in Space Research, doi:10.1016/j.asr.2019.09.011.

     

    Sandwell D T, Müller R D, Smith W H F, et al. 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205):65-67, doi:10.1126/science.1258213.

     

    Sauter D, Cannat M, Rouméjon S, et al. 2013. Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years. Nature Geoscience, 6(4):314-320, doi:10.1038/ngeo1771.

     

    Shen Z K, Zhao C K, Yin A, et al. 2000. Contemporary crustal deformation in east Asia constrained by Global Positioning System measurements. Journal of Geophysical Research:Solid Earth, 105(B3):5721-5734, doi:10.1029/1999jb900391.

     

    Smith D. 2013. Mantle spread across the sea floor. Nature Geoscience, 6(4):247-248, doi:10.1038/ngeo1786.

     

    Smith W H F. 1998. Seafloor tectonic fabric from satellite altimetry. Annual Review of Earth and Planetary Sciences, 26:697-747, doi:10.1146/annurev.earth.26.1.697.

     

    Sun W K, Okubo S, Vaníček P. 1996. Global displacements caused by point dislocations in a realistic Earth model. Journal of Geophysical Research:Solid Earth, 101(B4):8561-8577, doi:10.1029/95jb03536.

     

    Wessel P. 2001. Global distribution of seamounts inferred from gridded Geosat/ERS-1 altimetry. Journal of Geophysical Research:Solid Earth, 106(B9):19431-19441, doi:10.1029/2000jb000083.

     

    Zhang S J, Sandwell D T. 2016. Retracking of SARAL/AltiKa radar altimetry waveforms for optimal gravity field recovery. Marine Geodesy, 40(1):40-56, doi:10.1080/01490419.2016.1265032.

     

    郝天珧, 黄松, 徐亚等. 2008.南海东北部及邻区深部结构的综合地球物理研究.地球物理学报, 51(6):1785-1796. doi: 10.3321/j.issn:0001-5733.2008.06.019 http://www.geophy.cn//CN/abstract/abstract842.shtml

     

    金双根, 朱文耀. 2003.南半球减速膨胀的定量分析.地球物理学报, 46(6):760-766. doi: 10.3321/j.issn:0001-5733.2003.06.006 http://www.geophy.cn//CN/abstract/abstract468.shtml

     

    李家彪, 丁巍伟, 高金耀等. 2011.南海新生代海底扩张的构造演化模式:来自高分辨率地球物理数据的新认识.地球物理学报, 54(12):3004-3015, doi:10.3969/j.issn.0001-5733.2011.12.003. http://www.geophy.cn//CN/abstract/abstract8291.shtml

     

    梁裕扬. 2014.西南印度洋脊中段岩浆——构造动力学模式(49°~51°E)-来自精细地形数据的研究[博士论文].北京: 中国科学院大学.http://d.g.wanfangdata.com.cn/Thesis_Y2613964.aspx

     

    任建业. 2008.海洋底构造导论.武汉:中国地质大学出版社.

  • 加载中

(7)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2019-12-11
修回日期:  2020-03-31
上线日期:  2020-07-05

目录