高密度极尖区的形成原因

肖超, 刘文龙, 张典钧, 张钊. 2020. 高密度极尖区的形成原因. 地球物理学报, 63(9): 3231-3239, doi: 10.6038/cjg2020N0424
引用本文: 肖超, 刘文龙, 张典钧, 张钊. 2020. 高密度极尖区的形成原因. 地球物理学报, 63(9): 3231-3239, doi: 10.6038/cjg2020N0424
XIAO Chao, LIU WenLong, ZHANG DianJun, ZHANG Zhao. 2020. Formation of the high-density cusp. Chinese Journal of Geophysics (in Chinese), 63(9): 3231-3239, doi: 10.6038/cjg2020N0424
Citation: XIAO Chao, LIU WenLong, ZHANG DianJun, ZHANG Zhao. 2020. Formation of the high-density cusp. Chinese Journal of Geophysics (in Chinese), 63(9): 3231-3239, doi: 10.6038/cjg2020N0424

高密度极尖区的形成原因

  • 基金项目:

    国家自然科学基金项目(41821003,41974194,41574154)资助

详细信息
    作者简介:

    肖超, 男, 1990年生, 博士研究生, 研究方向为空间物理.E-mail:chaoxiao@buaa.edu.cn

    通讯作者: 刘文龙, 男, 1980年生, 博士, 研究员, 研究方向为空间物理.E-mail:liuwenlong@buaa.edu.cn
  • 中图分类号: P353;P354

Formation of the high-density cusp

More Information
  • 极尖区是太阳风进入磁层的一个重要窗口,极尖区密度是反映这一物理过程的重要参量,通常情况下极尖区密度约为1~10 cm-3,但有时卫星会观测到密度大于40 cm-3的极尖区,本文称之为高密度极尖区.我们分析了Cluster卫星2001—2009年的观测数据,在470个极尖区穿越中找到28个高密度极尖区穿越事件并进行了统计研究,分析了高密度极尖区事件的形成原因,进而讨论了太阳风高效地进入极尖区的外部条件.结果表明:距正午的距离(|MLT-12|)较小,太阳风的密度高,低纬有磁层顶磁重联发生以及正偶极倾角都是观测到高密度极尖区事件的有利条件,并且当同时满足上述4个条件时,高密度极尖区事件发生率为100%;而低纬磁层顶磁重联以及大的正偶极倾角被认为是太阳风高效地进入极尖区的重要条件.这些研究结果有助于我们更进一步地理解太阳风进入极尖区的物理机制.

  • 加载中
  • 图 1 

    三类典型事例高数密度极尖区:日侧磁层顶磁重联事件(2007-04-22 04:34—05:06,a1—e1),夜侧磁层顶磁重联事件(2005-03-16 08:01—08:54,a2—e2)以及没有磁层顶磁重联事件(2006-08-27 06:42—06:50,a3—e3)

    Figure 1. 

    Three typical cases of high-density cusp crossing: dayside magnetopause reconnection event (2007-04-22 04:34—05:06, a1—e1), nightside magnetopause reconnection event (2005-03-16 08:01—08:54, a2—e2) and no magnetopause reconnection event (2006-08-27 06:42—06:50, a3—e3)

    图 2 

    (a) 2001—2009年太阳风数密度NSW的分布情况;(b)高数密度极尖区穿越事件的最大数密度Max(NCusp)与NSW的对应关系

    Figure 2. 

    (a) The distribution of the solar wind density from 2001 to 2009; (b) The relationship between the maximum density of high-density cusp and the solar wind density

    图 3 

    高数密度极尖区事件的MLT与对应的NSW(a),Max(NCusp)(b),Max(NCusp)/NSW(c),偶极倾角(d)的关系

    Figure 3. 

    Relationship between MLT and (a) NSW, (b) Max(NCusp), (c) Max(NCusp)/NSW, (d) dipole tilt

    图 4 

    高密度极尖区事件偶极倾角与对应的Max(NCusp) (a),Max(NCusp)/NSW(b)的关系

    Figure 4. 

    Relationship between dipole tilt and (a) Max(NCusp) and (b) Max(NCusp)/NSW

  •  

    Aparicio B, Thelin B, Lundin R. 1991. The polar cusp from a particle point of view:A statistical study based on Viking data. Journal of Geophysical Research:Space Physics, 96(A8):14023-14031. doi: 10.1029/90JA01075

     

    Chapman S, Ferraro V C A. 1930. A new theory of magnetic storms. Nature, 126(3169):129-130. doi: 10.1038/126129a0

     

    Connor H J, Raeder J, Trattner K J. 2012. Dynamic modeling of cusp ion structures. Journal of Geophysical Research:Space Physics, 117(A4):A04203, doi:10.1029/2011JA017203.

     

    Dungey J W. 1961. Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6(2):47-48. doi: 10.1103/PhysRevLett.6.47

     

    Escoubet C P, Smith M F, Fung S F, et al. 1992. Staircase ion signature in the polar cusp:A case study. Geophysical Research Letters, 19(17):1735-1738. doi: 10.1029/92GL01806

     

    Escoubet C P, Berchem J, Bosqued J M, et al. 2008. Effect of a northward turning of the interplanetary magnetic field on cusp precipitation as observed by Cluster. Journal of Geophysical Research:Space Physics, 113(A7):A07S13, doi:10.1029/2007JA012771.

     

    Farrell W M, Van Allen J A. 1990. Observations of the Earth's polar cleft at large radial distances with the Hawkeye 1 Magnetometer. Journal of Geophysical Research, 95(A12):20945-20958. doi: 10.1029/JA095iA12p20945

     

    Frank L A. 1971. Plasma in the Earth's polar magnetosphere. Journal of Geophysical Research, 76(22):5202-5219. doi: 10.1029/JA076i022p05202

     

    Fu H S, Cao J B, Vaivads A, et al. 2016. Identifying magnetic reconnection events using the FOTE method. Journal of Geophysical Research:Space Physics, 121(2):1263-1272. doi: 10.1002/2015JA021701

     

    Fu H S, Vaivads A, Khotyaintsev Y V, et al. 2017. Intermittent energy dissipation by turbulent reconnection. Geophysical Research Letters, 44(1):37-43. doi: 10.1002/2016GL071787

     

    Fu S Y, Sun W J. 2016. Models of the Earth's plasmapause position. Science China Earth Sciences, 59(4):871-872. doi: 10.1007/s11430-016-5266-z

     

    Fujimoto R, Mitsuda K, McCammon D, et al. 2007. Evidence for solar-wind charge-exchange X-Ray emission from the earth's magnetosheath. Progress of Theoretical Physics Supplement, 169:71-74, doi:10.1143/PTPS.169.71.

     

    Guo J G, Shi J K, Cheng Z W, et al. 2013. Variation of dependence of the cusp location at different altitude on the dipole tilt. Chinese Science Bulletin, 58(28-29):3541-3545. doi: 10.1007/s11434-013-5831-1

     

    Haerendel G, Paschmann G, Sckopke N, et al. 1978. The frontside boundary layer of the magnetosphere and the problem of reconnection. Journal of Geophysical Research:Space Physics, 83(A7):3195-3216. doi: 10.1029/JA083iA07p03195

     

    Heikkila W J, Winningham J D. 1971. Penetration of magnetosheath plasma to low altitudes through the dayside magnetospheric cusps. Journal of Geophysical Research, 76(4):883-891. doi: 10.1029/JA076i004p00883

     

    Heikkila W J. 1985. Definition of the Cusp.//Holtet J A, Egeland A eds. The Polar Cusp. Dordrecht: Springer Netherlands, 387-395.

     

    Kremser G, Woch J, Mursula K, et al. 1995. Origin of energetic ions in the polar cusp inferred from ion composition measurements by the Viking satellite. Annales Geophysicae, 13(6):595-607. doi: 10.1007/s00585-995-0595-9

     

    Kuntz K D, Collado-Vega Y M, Collier M R, et al. 2015. The solar wind charge-exchange production factor for hydrogen. The Astrophysical Journal, 808(2):143. doi: 10.1088/0004-637X/808/2/143

     

    Lavraud B, Fedorov A, Budnik E, et al. 2004. Cluster survey of the high-altitude cusp properties:A three-year statistical study. Annales Geophysicae, 22(8):3009-3019. doi: 10.5194/angeo-22-3009-2004

     

    Liu W L, Tu W C, Li X L, et al. 2016. On the calculation of electric diffusion coefficient of radiation belt electrons with in situ electric field measurements by THEMIS. Geophysical Research Letters, 43(3):1023-1030. doi: 10.1002/2015GL067398

     

    Liu W L. 2016. Kinetic features of bursty bulk flows and dipolarization fronts. Science China Earth Sciences, 59(12):2463-2464. doi: 10.1007/s11430-016-0175-8

     

    Lockwood M, Smith M F. 1989. Low-altitude signatures of the cusp and flux transfer events. Geophysical Research Letters, 16(8):879-882. doi: 10.1029/GL016i008p00879

     

    Lockwood M, Smith M F. 1994. Low and middle altitude cusp particle signatures for general magnetopause reconnection rate variations:1. Theory. Journal of Geophysical Research:Space Physics, 99(A5):8531-8553. doi: 10.1029/93JA03399

     

    Lockwood M. 1995. Overlapping cusp ion injections:An explanation invoking magnetopause reconnection. Geophysical Research Letters, 22(9):1141-1144. doi: 10.1029/95GL00811

     

    Lv X, Liu W L. 2018. Measurements of convection electric field in the inner magnetosphere. Science China Technological Sciences, 61(12):1866-1871. doi: 10.1007/s11431-017-9200-6

     

    Newell P T, Meng C I. 1988. The cusp and the cleft/boundary layer:Low-altitude identification and statistical local time variation. Journal of Geophysical Research:Space Physics, 93(A12):14549-14556. doi: 10.1029/JA093iA12p14549

     

    Newell P T, Meng C I. 1991. Ion acceleration at the equatorward edge of the cusp:Low altitude observations of patchy merging. Geophysical Research Letters, 18(10):1829-1832. doi: 10.1029/91GL02088

     

    Perry C H, Grande M, Zurbuchen T H, et al. 2000. Use of Fe charge state changes as a tracer for solar wind entry to the magnetosphere. Geophysical Research Letters, 27(16):2441-2444. doi: 10.1029/2000GL003780

     

    Pitout F, Escoubet C P, Klecker B, et al. 2009. Cluster survey of the mid-altitude cusp-Part 2:Large-scale morphology. Annales Geophysicae, 27(5):1875-1886. doi: 10.5194/angeo-27-1875-2009

     

    Rème H, Aoustin C, Bosqued J M, et al. 2001. First multispacecraft ion measurements in and near the Earth's magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Annales Geophysicae, 19(10-12):1303-1354. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000000658599

     

    Reiff P H, Hill T W, Burch J L. 1977. Solar wind plasma injection at the dayside magnetospheric cusp. Journal of Geophysical Research, 82(4):479-491. doi: 10.1029/JA082i004p00479

     

    Robertson I P, Collier M R, Cravens T E, et al. 2006. X-ray emission from the terrestrial magnetosheath including the cusps. Journal of Geophysical Research:Space Physics, 111(A12):A12105, doi:10.1029/2006JA011672.

     

    Rosenbauer H, Grünwaldt H, Montgomery M D, et al. 1975. Heos 2 plasma observations in the distant polar magnetosphere:The plasma mantle. Journal of Geophysical Research, 80(19):2723-2737. doi: 10.1029/JA080i019p02723

     

    Russell C T, Elphic R C. 1979. ISEE observations of flux transfer events at the dayside magnetopause. Geophysical Research Letters, 6(1):33-36. doi: 10.1029/GL006i001p00033

     

    Russell C T. 2000. The polar cusp. Advances in Space Research, 25(7-8):1413-1424. doi: 10.1016/S0273-1177(99)00653-5

     

    Shelley E G, Sharp R D, Johnson R G. 1976. He++ and H+ flux measurements in the day side cusp:Estimates of convection electric field. Journal of Geophysical Research, 81(13):2363-2370. doi: 10.1029/JA081i013p02363

     

    Shen C, Dunlop M, Ma Y H, et al. 2011. The magnetic configuration of the high-latitude cusp and dayside magnetopause under strong magnetic shears. Journal of Geophysical Research:Space Physics, 116(A9):A09228, doi:10.1029/2011JA016501.

     

    Shi Q Q, Zong Q G, Zhang H, et al. 2009. Cluster observations of the entry layer equatorward of the cusp under northward interplanetary magnetic field. Journal of Geophysical Research:Space Physics, 114(A12):A12219, doi:10.1029/2009JA014475.

     

    Shi Q Q, Zong Q G, Fu S Y, et al. 2013. Solar wind entry into the high-latitude terrestrial magnetosphere during geomagnetically quiet times. Nature Communications, 4(1):1466. doi: 10.1038/ncomms2476

     

    Tao D, Liu W L, Ma Y D. 2018. Plasma perturbations in the coexisting environment of VLF transmitter emission, lightning strokes and seismic activity. Science China Technological Sciences, 61(5):678-686. doi: 10.1007/s11431-017-9069-y

     

    Trattner K J, Coates A J, Fazakerley A N, et al. 1998. Overlapping ion populations in the cusp:polar/TIMAS results. Geophysical Research Letters, 25(10):1621-1624. doi: 10.1029/98GL01060

     

    Walsh B M, Niehof J, Collier M R, et al. 2016. Density variations in the Earth's magnetospheric cusps. Journal of Geophysical Research:Space Physics, 121(3):2131-2142. doi: 10.1002/2015JA022095

     

    Wang T Y, Cao J B, Fu H S, et al. 2014. Turbulence in the Earth's cusp region:The k-filtering analysis. Journal of Geophysical Research:Space Physics, 119(12):9527-9542. doi: 10.1002/2014JA019997

     

    Woch J, Lundin R. 1992. Magnetosheath plasma precipitation in the polar cusp and its control by the interplanetary magnetic field. Journal of Geophysical Research:Space Physics, 97(A2):1421-1430. doi: 10.1029/91JA02487

     

    Xiao C, Liu W L, Shen C, et al. 2018. Study on the curvature and gradient of the magnetic field in earth's cusp region based on the magnetic curvature analysis method. Journal of Geophysical Research:Space Physics, 123(5):3794-3805. doi: 10.1029/2017JA025028

     

    Yu Y Q, Ridley A J. 2013. Exploring the influence of ionospheric O+ outflow on magnetospheric dynamics:dependence on the source location. Journal of Geophysical Research:Space Physics, 118(4):1711-1722. doi: 10.1029/2012JA018411

     

    Zhang D J, Liu W L, Li X L, et al. 2018. Observations of impulsive electric fields induced by interplanetary shock. Geophysical Research Letters, 45(15):7287-7296. doi: 10.1029/2018GL078809

     

    Zhang H, Fritz T A, Zong Q G, et al. 2005. Stagnant exterior cusp region as viewed by energetic electrons and ions:A statistical study using Cluster Research with Adaptive Particle Imaging Detectors (RAPID) data. Journal of Geophysical Research:Space Physics, 110(A5):A05211, doi:10.1029/2004JA010562.

     

    Zhang H, Dunlop M W, Zong Q G, et al. 2007. Geometry of the high-latitude magnetopause as observed by Cluster. Journal of Geophysical Research:Space Physics, 112(A2):A02204, doi:10.1029/2006JA011774.

     

    Zhou X W, Russell C T, Le G, et al. 2000. Solar wind control of the polar cusp at high altitude. Journal of Geophysical Research:Space Physics, 105(A1):245-251. doi: 10.1029/1999JA900412

     

    Zong Q G, Fritz T A, Zhang H, et al. 2004. Triple cusps observed by Cluster-Temporal or spatial effect? Geophysical Research Letters, 31(9):L09810, doi:10.1029/2003GL019128.

  • 加载中

(4)

计量
  • 文章访问数:  289
  • PDF下载数:  302
  • 施引文献:  0
出版历程
收稿日期:  2020-01-02
修回日期:  2020-04-25
上线日期:  2020-09-05

目录