伴随等离子体密度下降的磁声波与辐射带电子的波粒相互作用及其散射效应

顾旭东, 何颖, 倪彬彬, 付松, 花漫, 项正. 2020. 伴随等离子体密度下降的磁声波与辐射带电子的波粒相互作用及其散射效应. 地球物理学报, 63(6): 2121-2130, doi: 10.6038/cjg2020N0384
引用本文: 顾旭东, 何颖, 倪彬彬, 付松, 花漫, 项正. 2020. 伴随等离子体密度下降的磁声波与辐射带电子的波粒相互作用及其散射效应. 地球物理学报, 63(6): 2121-2130, doi: 10.6038/cjg2020N0384
GU XuDong, HE Ying, NI BinBin, FU Song, HUA Man, XIANG Zheng. 2020. Scattering of radiation belt electrons caused by wave-particle interactions with magnetosonic waves associated with plasma density drop. Chinese Journal of Geophysics (in Chinese), 63(6): 2121-2130, doi: 10.6038/cjg2020N0384
Citation: GU XuDong, HE Ying, NI BinBin, FU Song, HUA Man, XIANG Zheng. 2020. Scattering of radiation belt electrons caused by wave-particle interactions with magnetosonic waves associated with plasma density drop. Chinese Journal of Geophysics (in Chinese), 63(6): 2121-2130, doi: 10.6038/cjg2020N0384

伴随等离子体密度下降的磁声波与辐射带电子的波粒相互作用及其散射效应

  • 基金项目:

    国家自然科学基金(41574160,41674163),湖北省自然科学优秀青年基金(2016CFA044),中国航天局预研项目(D020303,D020308),澳门科技大学月球与行星科学实验室和中国科学院月球与深空探测重点实验室伙伴实验室开放课题共同资助

详细信息
    作者简介:

    顾旭东, 男, 副教授, 主要从事磁层物理和低频波观测系统及传播等方面的研究.E-mail:guxudong@whu.edu.cn

  • 中图分类号: P354;P353

Scattering of radiation belt electrons caused by wave-particle interactions with magnetosonic waves associated with plasma density drop

  • 利用范阿伦卫星的高质量观测数据,我们报道了伴随等离子体密度下降的磁声波现象.通过选取分别发生于2013年7月26日(事件A)和2013年9月19日(事件B)的两个相应事件进行细致分析,我们开展试验粒子模拟计算了磁声波对辐射带电子的散射系数,并求解二维福克-普朗克扩散方程量化了磁声波散射导致的辐射带电子动态变化.结果表明,事件A中的磁声波的散射作用主要发生于投掷角范围为60°~80°、能量范围为20~200 keV的辐射带电子,而事件B中的磁声波的散射作用主要发生于投掷角范围为50°~80°、能量范围为20~400 keV的辐射带电子;两个事件中的磁声波均能导致辐射带电子的蝴蝶状投掷角分布,但是由于事件B的磁声波幅度更强,形成的电子蝴蝶状分布更明显.

  • 加载中
  • 图 1 

    范阿伦B卫星2013年7月26日的等离子体波的观测结果

    Figure 1. 

    Plasma waves observations of Van Allen Probes B on 26 July 2013

    图 2 

    在磁声波的影响下,电子的投掷角、交叉(投掷角,动量)、动量扩散系数(从左到右:〈Dαα〉,〈|Dαp|〉,〈Dpp〉)随赤道投掷角(αeq)和电子动能Ek变化的二维图

    Figure 2. 

    Two-dimensional plots of drift- and bounce-average pitch angle, cross (pitch angle, momentum) and momentum diffusion coefficients (from left to right: 〈Dαα〉, 〈|Dαp|〉, 〈Dpp〉) as a function of equatorial pitch angle αeq and electron kinetic energy Ek by magnetosonic waves

    图 3 

    (a—e)在MS波的影响下,相应时间内电子PSD(Phase Space Density, 相空间密度)的二维演化图;(f—i)在L=4.2处,模拟电子PSD(实线)在(f) Δt=3 h; (g) Δt=6 h; (h) Δt=12 h; (i) Δt=24 h的演化图,虚线表示初始电子PSD

    Figure 3. 

    (a—e) Two-dimensional temporal evolution of electron PSD under the impact of MS waves at the indicated interaction time stamps; (f—i) The temporal evolution of simulated electron PSDs (the solid lines) at (f) Δt=3 h; (g) Δt=6 h; (h) Δt=12 h; (i) Δt=24 h at L=4.2, with dashed line representing initial electron PSD

    图 4 

    范阿伦B卫星2013年9月19日的等离子体波的观测

    Figure 4. 

    Plasma waves observations of Van Allen Probes B on 19 September 2013

    图 5 

    在磁声波的影响下,电子的投掷角、交叉(投掷角和动量)、动量扩散系数(从左到右:〈Dαα〉, 〈|Dαp|〉, 〈Dpp〉)随赤道投掷角(αeq)和电子动能Ek变化的二维图

    Figure 5. 

    Two-dimensional plots of drift- and bounce-average pitch angle, cross (pitch angle, momentum) and momentum diffusion coefficients (from left to right: 〈Dαα〉, 〈|Dαp|〉, 〈Dpp〉) as a function of equatorial pitch angle αeq and electron kinetic energy Ek by magnetosonic waves

    图 6 

    (a—e)在MS波的影响下,相应时间内电子PSD的二维演化图;(f—i)在L=4.36处,模拟电子PSD(实线)在(f) Δt=3 h; (g) Δt=6 h; (h) Δt=12 h; (i) Δt=24 h的演化图,虚线表示初始电子PSD

    Figure 6. 

    (a—e) Two-dimensional temporal evolution of electric PSD under the impact of MS waves at the indicated interaction time stamps; (f—i) The temporal evolution of simulated electron PSDs (the solid lines) at (f) Δt=3 h; (g) Δt=6 h; (h) Δt=12 h; (i) Δt=24 h at L=4.36, with dashed line representing initial electron PSD

  •  

    Baker D N, Blake J B, Klebesadel R W, et al. 1986. Highly relativistic electrons in the earth's outer magnetosphere:1. Lifetimes and temporal history 1979-1984. Journal of Geophysical Research:Space Physics, 91(A4):4265-4276. doi: 10.1029/JA091iA04p04265

     

    Baker D N, Kanekal S G, Hoxie V C, et al. 2013. The Relativistic Electron-Proton Telescope (REPT) Instrument on board the Radiation Belt Storm Probes (RBSP) Spacecraft:characterization of earth's radiation belt high-energy particle populations. Space Science Reviews, 179(1-4):337-381. doi: 10.1007/s11214-012-9950-9

     

    Balikhin M A, Shprits Y Y, Walker S N, et al. 2015. Observations of discrete harmonics emerging from equatorial noise. Nature Communication, 6:7703, doi:10.1038/ncomms8703.

     

    Blake J B, Carranza P A, Claudepierre S G, et al. 2013. The Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the radiation belt storm probes (RBSP) spacecraft. Space Science Reviews, 179(1-4):383-421. doi: 10.1007/s11214-013-9991-8

     

    Boardsen S A, Gallagher D L, Gurnett D A, et al. 1992. Funnel-shaped, low-frequency equatorial waves. Journal of Geophysical Research:Space Physics, 97(A10):14967-14976. doi: 10.1029/92JA00827

     

    Bortnik J, Thorne R M. 2010. Transit time scattering of energetic electrons due to equatorially confined magnetosonic waves. Journal of Geophysical Research:Space Physics, 115(A7):A07213, doi:10.1029/2010JA015283.

     

    Chen L J, Thorne R M, Jordanova V K, et al. 2011. Magnetosonic wave instability analysis for proton ring distributions observed by the LANL magnetospheric plasma analyzer. Journal of Geophysical Research:Space Physics, 116(A3):A03223, doi:10.1029/2010JA016068.

     

    Chen L J, Thorne R M. 2012. Perpendicular propagation of magnetosonic waves. Geophysical Research Letters, 39(14):L14102, doi:10.1029/2012GL052485.

     

    Chen L J, Sun J C, Lu Q M, et al. 2018. Two-dimensional particle-in-cell simulation of magnetosonic wave excitation in a dipole magnetic field. Geophysical Research Letters, 45(17):8712-8720. doi: 10.1029/2018GL079067

     

    Fu H S, Cao J B, Zhima Z, et al. 2014. First observation of rising-tone magnetosonic waves. Geophysical Research Letters, 41(21):7419-7426. doi: 10.1002/2014GL061867

     

    Fu S, Ni B B, Zhou R X, et al. 2019. Combined scattering of radiation belt electrons caused by Landau and bounce resonant interactions with magnetosonic waves. Geophysical Research Letters, 46(17-18):10313-10321. doi: 10.1029/2019GL084438

     

    Fu S, Yi J, Ni B B, et al. 2020. Combined scattering of radiation belt electrons by low-frequency hiss:Cyclotron, Landau, and bounce resonances. Geophysical Research Letters, 47:e2020GL086963. http://cn.bing.com/academic/profile?id=cce65a906533da63c8174011bdb72378&encoded=0&v=paper_preview&mkt=zh-cn

     

    Gu X D, Xia S J, Fu S, et al. 2020. Dynamic responses of radiation belt electron fluxes to magnetic storms and their correlations with magnetospheric plasma wave activities. The Astrophysical Journal, 891:127, https://doi.org/10.3847/1538-4357/ab71fc. doi: 10.3847/1538-4357/ab71fc

     

    Hao Y X, Zong Q G, Wang Y F, et al. 2014. Interactions of energetic electrons with ULF waves triggered by interplanetary shock:Van Allen Probes observations in the magnetotail. Journal of Geophysical Research:Space Physics, 119(10):8262-8273. doi: 10.1002/2014JA020023

     

    Horne R B, Wheeler G V, Alleyne H S C K. 2000. Proton and electron heating by radially propagating fast magnetosonic waves. Journal of Geophysical Research:Space Physics, 105(A12):27597-27610. doi: 10.1029/2000JA000018

     

    Horne R B, Thorne R M, Glauert S A, et al. 2007. Electron acceleration in the Van Allen radiation belts by fast magnetosonic waves. Geophysical Research Letters, 34(17):L17107, doi:10.1029/2007GL030267.

     

    Kasahara Y, Kenmochi H, Kimura I. 1994. Propagation characteristics of the ELF emissions observed by the satellite Akebono in the magnetic equatorial region. Radio Science, 29(4):751-767. doi: 10.1029/94RS00445

     

    Kletzing C A, Kurth W S, Acuna M, et al. 2013. The electric and magnetic field instrument suite and integrated science (EMFISIS) on RBSP. Space Science Reviews, 179(1-4):127-181. doi: 10.1007/s11214-013-9993-6

     

    Kurth W S, De Pascuale S, Faden J B, et al. 2015. Electron densities inferred from plasma wave spectra obtained by the waves instrument on Van Allen Probes. Journal of Geophysical Research:Space Physics, 120(2):904-914. doi: 10.1002/2014JA020857

     

    Laakso H, Junginger H, Roux A, et al. 1990. Magnetosonic waves above fc (H+) at geostationary orbit:GEOS 2 results. Journal of Geophysical Research:Space Physics, 95(A7):10609-10621. doi: 10.1029/JA095iA07p10609

     

    Lei M D, Xie L, Li J X, et al. 2017. The radiation belt electron scattering by magnetosonic wave:dependence on key parameters. Journal of Geophysical Research:Space Physics, 122(12):12338-12352. doi: 10.1002/2016JA023801

     

    Li J X, Ni B B, Xie L, et al. 2014. Interactions between magnetosonic waves and radiation belt electrons:comparisons of quasi-linear calculations with test particle simulations. Geophysical Research Letters, 41(14):4828-4834. doi: 10.1002/2014GL060461

     

    Li J X, Ni B B, Ma Q L, et al. 2016. Formation of energetic electron butterfly distributions by magnetosonic waves via Landau resonance. Geophysical Research Letters, 43(7):3009-3016. doi: 10.1002/2016GL067853

     

    Li X L, Baker D N, Temerin M, et al. 1997. Multisatellite observations of the outer zone electron variation during the November 3-4, 1993, magnetic storm. Journal of Geophysical Research:Space Physics, 102(A7):14123-14140. doi: 10.1029/97JA01101

     

    Liu Y, Zong Q G, Zhou X Z, et al. 2019. Understanding electron dropout echoes induced by interplanetary shocks:test particle simulations. Journal of Geophysical Research:Space Physics, 124(8):6759-6775. doi: 10.1029/2019JA027018

     

    Ma Q L, Li W, Chen L J, et al. 2014. Magnetosonic wave excitation by ion ring distributions in the earth's inner magnetosphere. Journal of Geophysical Research:Space Physics, 119(2):844-852. doi: 10.1002/2013JA019591

     

    Mauk B H, Fox N J, Kanekal S G, et al. 2013. Science objectives and rationale for the radiation belt storm probes mission. Space Science Reviews, 179(1-4):3-27. doi: 10.1007/s11214-012-9908-y

     

    Ni B B, Shprits Y, Nagai T, et al. 2009. Reanalyses of the radiation belt electron phase space density using nearly equatorial CRRES and polar-orbiting Akebono satellite observations. Journal of Geophysical Research, 114(A5):A05208, doi:10.1029/2008JA013933.

     

    Ni B B, Hua M, Zhou R X, et al. 2017. Competition between outer zone electron scattering by plasmaspheric hiss and magnetosonic waves. Geophysical Research Letters, 44(8):3465-3474, doi:10.1002/2017GL072989.

     

    Ni B B, Yan L, Fu S, et al. 2020. Distinct formation and evolution characteristics of outer radiation belt electron butterfly pitch angle distributions observed by Van Allen Probes. Geophysical Research Letters, 47, https://doi.org/10.1029/2019GL086487. doi: 10.1029/2019GL086487

     

    Perraut S, Roux A, Robert P, et al. 1982. A systematic study of ULF waves above FH+ from GEOS 1 and 2 measurements and their relationships with proton ring distributions. Journal of Geophysical Research:Space Physics, 87(A8):6219-6236. doi: 10.1029/JA087iA08p06219

     

    Russell C T, Holzer R E, Smith E J. 1970. OGO 3 observations of ELF noise in the magnetosphere:2. The nature of the equatorial noise. Journal of Geophysical Research, 75(4):755-768.

     

    Santolík O, Pickett J S, Gurnett D A, et al. 2002. Spatiotemporal variability and propagation of equatorial noise observed by cluster. Journal of Geophysical Research:Space Physics, 107(A12):1495, doi:10.1029/2001JA009159.

     

    Shprits Y, Kondrashov D, Chen Y, et al. 2007. Reanalysis of relativistic radiation belt electron fluxes using CRRES satellite data, a radial diffusion model, and a Kalman filter. Journal of Geophysical Research:Space Physics, 112(A12):A12216, doi:10.1029/2007JA012579.

     

    Spence H E, Reeves G D, Baker D N, et al. 2013. Science goals and overview of the Radiation Belt Storm Probes (RBSP) Energetic Particle, Composition, and Thermal Plasma (ECT) suite on NASA's Van Allen Probes mission. Space Science Reviews, 179(1):311-336. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=50b6907f4443ac1cb7075724c99694f4

     

    Sun J C, Gao X L, Chen L J, et al. 2016a. A parametric study for the generation of ion Bernstein modes from a discrete spectrum to a continuous one in the inner magnetosphere. I. Linear theory. Physics of Plasmas, 23(2):022901, doi:10.1063/1.4941283.

     

    Sun J C, Gao X L, Chen L J, et al. 2016b. A parametric study for the generation of ion Bernstein modes from a discrete spectrum to a continuous one in the inner magnetosphere. II. Particle-in-cell simulations. Physics of Plasmas, 23(2):022902, doi:10.1063/1.4941284.

     

    Sun J C, Gao X L, Lu Q M, et al. 2017. Spectral properties and associated plasma energization by magnetosonic waves in the Earth's magnetosphere:Particle-in-cell simulations. Journal of Geophysical Research:Space Physics, 122(5):5377-5390. doi: 10.1002/2017JA024027

     

    Thorne R M. 2010. Radiation belt dynamics:the importance of wave-particle interactions. Geophysical Research Letters, 37(22):L22107, doi:10.1029/2010GL044990.

     

    Thorne R M, Li W, Ni B B, et al. 2013. Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus. Nature, 504(7480):411-414. doi: 10.1038/nature12889

     

    Xiang Z, Li X, Temerin M, et al. 2020. On energetic electron dynamics during geomagnetic quiet times in Earth's inner radiation belt due to atmospheric collisional loss and cosmic ray albedo neutron decay (CRAND) as a source. Journal of Geophysical Research: Space Physics, 125: e2019JA027678.

     

    Xiao F L, Yang C, Su Z P, et al. 2015. Wave-driven butterfly distribution of Van Allen belt relativistic electrons. Nature Communications, 6:8590, doi:10.1038/ncomms9590.

     

    Zong Q G, Zhou X Z, Li X, et al. 2007. Ultralow frequency modulation of energetic particles in the dayside magnetosphere. Geophysical Research Letters, 34(12):L12105, doi:10.1029/2007GL029915.

     

    Zong Q G, Zhou X Z, Wang Y F, et al. 2009. Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt. Journal of Geophysics Research:Space Physics, 114(A10):A10204, doi:10.1029/2009JA014393.

     

    Zong Q G, Wang Y F, Yuan C J. 2011. Fast acceleration of "killer" electrons and energetic ions by interplanetary shock stimulated ULF waves in the inner magnetosphere. Chinese Science Bulletin, 56(12):1188-1201, doi:10.1007/s11434-010-4308-8.

  • 加载中

(6)

计量
  • 文章访问数:  991
  • PDF下载数:  270
  • 施引文献:  0
出版历程
收稿日期:  2019-11-05
修回日期:  2020-02-19
上线日期:  2020-06-25

目录