波粒相互作用导致环电流质子沉降的卫星共轭观测

王杰, 袁志刚, 余雄东, 薛祖祥. 2020. 波粒相互作用导致环电流质子沉降的卫星共轭观测. 地球物理学报, 63(6): 2131-2140, doi: 10.6038/cjg2020N0313
引用本文: 王杰, 袁志刚, 余雄东, 薛祖祥. 2020. 波粒相互作用导致环电流质子沉降的卫星共轭观测. 地球物理学报, 63(6): 2131-2140, doi: 10.6038/cjg2020N0313
WANG Jie, YUAN ZhiGang, YU XiongDong, XUE ZuXiang. 2020. Precipitation of ring current protons caused by wave-particle interactions with satellite conjugated observation. Chinese Journal of Geophysics (in Chinese), 63(6): 2131-2140, doi: 10.6038/cjg2020N0313
Citation: WANG Jie, YUAN ZhiGang, YU XiongDong, XUE ZuXiang. 2020. Precipitation of ring current protons caused by wave-particle interactions with satellite conjugated observation. Chinese Journal of Geophysics (in Chinese), 63(6): 2131-2140, doi: 10.6038/cjg2020N0313

波粒相互作用导致环电流质子沉降的卫星共轭观测

  • 基金项目:

    国家自然科学基金(41874194,41374168,41521063)资助

详细信息
    作者简介:

    王杰, 男, 1995年生, 硕士研究生, 主要从事电离层磁层物理方面的研究.E-mail:w-jie@whu.edu.cn

    通讯作者: 袁志刚, 男, 1974年生, 教授, 主要从事电离层磁层耦合方面的研究.E-mail:y_zgang@vip.163.com
  • 中图分类号: P354;P353

Precipitation of ring current protons caused by wave-particle interactions with satellite conjugated observation

More Information
  • 波粒相互作用是环电流损失的重要机制之一,但波粒相互作用导致的环电流离子沉降而损失迄今为止缺乏直接的观测证据.基于磁层及电离层卫星的协同观测,本文报道了发生在2015年9月7日,由电磁离子回旋波(EMIC波)导致环电流质子沉降的共轭观测事件.在等离子体层的内边界,Van Allen Probe B卫星观测到,存在EMIC波的区域和不存在EMIC波的区域相比,离子通量的投掷角分布的各向异性变弱.我们将Van Allen Probe B卫星沿着磁力线投影到电离层高度,同时在该投影区域内DMSP 16卫星在亚极光区域观测到环电流质子沉降.而且,通过从理论上计算质子弹跳平均扩散系数,我们进一步证实观测的EMIC波确实能将环电流质子散射到损失锥中.本文的研究工作为EMIC波导致环电流质子沉降提供了直接的观测证据,揭示了环电流衰减的重要物理机制:EMIC波将环电流质子散射到损失锥中,从而沉降到低高度大气层中而损失.

  • 加载中
  • 图 1 

    DMSP 16卫星和Van Allen Probe B卫星共轭观测位置图

    Figure 1. 

    Conjugated observation map of DMSP 16 and Van Allen Probe B satellites

    图 2 

    Van Allen Probe B卫星观测的波动分析

    Figure 2. 

    Wave analysis observed by Van Allen Probe B

    图 3 

    DMSP 16卫星观测的粒子通量

    Figure 3. 

    Particle data from DMSP 16 SSJ5

    图 4 

    (a) EMIC波的高斯拟合曲线(蓝色实线); (b)质子对应于赤道损失锥角(3.2°)的弹跳平均扩散系数〈Dαα〉(黑线),其中红线表示强投掷角扩散系数DSD; (c)投掷角为0°~90°的质子弹跳平均扩散系数〈Dαα〉,其中黄色虚线对应子图(b)中的〈Dαα

    Figure 4. 

    (a) Gaussian fitting (blue solid line); (b) Bounce-averaged pitch angle diffusion rates for protons 〈Dαα〉 (black line) near the equatorial loss cone (3.2°), and the red line represents the rate of strong pitch diffusion (DSD); (c) Bounce-averaged pitch angle diffusion rates for protons 〈Dαα〉 with pitch angles of 0°~90° and the yellow dashed line corresponds to 〈Dαα〉 in subgraph (b)

  •  

    Burch J L, Lewis W S, Immel T J, et al. 2002. Interplanetary magnetic field control of afternoon-sector detached proton auroral arcs. Journal of Geophysical Research:Space Physics, 107(A9):SMP-17-1-SMP 17-13, doi:10.1029/2001JA007554.

     

    Cornwall J M. 1965. Cyclotron instabilities and electromagnetic emission in the ultra low frequency and very low frequency ranges. Journal of Geophysical Research, 70(1):61-69, doi:10.1029/JZ070i001p00061.

     

    Daglis I A, Thorne R M, Baumjohann W, et al. 1999. The terrestrial ring current:Origin, formation, and decay. Reviews of Geophysics, 37(4):407-438, doi:10.1029/1999RG900009.

     

    Fok M C, Wolf R A, Spiro R W, et al. 2001. Comprehensive computational model of Earth's ring current. Journal of Geophysical Research:Space Physics, 106(A5):8417-8424, doi:10.1029/2000JA000235.

     

    Fraser B J, Nguyen T S. 2001. Is the plasmapause a preferred source region of electromagnetic ion cyclotron waves in the magnetosphere? Journal of Atmospheric and Solar-Terrestrial Physics, 63(11):1225-1247, doi:10.1016/s1364-6826(00)00225-x.

     

    Frey H U. 2007. Localized aurora beyond the auroral oval. Reviews of Geophysics, 45(1):RG1003, doi:10.1029/2005rg000174.

     

    Fu S Y, Zong Q G, Wilken B, et al. 2001. Temporal and spatial variation of the ion composition in the ring current. Space Science Reviews, 95(1-2):539-554, doi:10.1023/A:1005212906199.

     

    Gao X L, Li W, Bortnik J, et al. 2015. The effect of different solar wind parameters upon significant relativistic electron flux dropouts in the magnetosphere. Journal of Geophysical Research:Space Physics, 120(6):4324-4337, doi:10.1002/2015JA021182.

     

    Hargreaves J K, Dessler A J. 1992. The solar-terrestrial environment: an introduction to geospace-the science of the terrestrial upper atmosphere, ionosphere, and magnetosphere. Camb Atmos: Space Sci, p169, Ser.Vol.5, 5.

     

    Horne R B, Thorne R M. 1993. On the preferred source location for the convective amplification of ion cyclotron waves. Journal of Geophysical Research:Space Physics, 98(A6):9233-9247, doi:10.1029/92JA02972.

     

    Hubert B, Gérard J C, Bisikalo D V, et al. 2001. The role of proton precipitation in the excitation of auroral FUV emissions. Journal of Geophysical Research:Space Physics, 106(A10):21475-21494, doi:10.1029/2000ja000288.

     

    Immel T J, Mende S B, Frey H U, et al. 2002. Precipitation of auroral protons in detached arcs. Geophysical Research Letters, 29(11):1519, doi:10.1029/2001GL013847.

     

    Jordanova V K, Spasojevic M, Thomsen M F. 2007. Modeling the electromagnetic ion cyclotron wave-induced formation of detached subauroral proton arcs. Journal of Geophysical Research:Space Physics, 112(A8):A08209, doi:10.1029/2006JA012215.

     

    Jun C W, Yue C, Bortnik J, et al. 2019a. A statistical study of EMIC waves associated with and without energetic particle injection from the magnetotail. Journal of Geophysical Research:Space Physics, 124(1):433-450, doi:10.1029/2018JA025886.

     

    Jun C W, Yue C, Bortnik J, et al. 2019b. EMIC wave properties associated with and without injections in the inner magnetosphere. Journal of Geophysical Research:Space Physics, 124(3):2029-2045, doi:10.1029/2018JA026279.

     

    Kasahara Y, Sawada A, Yamamoto M, et al. 1992. Ion cyclotron emissions observed by the satellite Akebono in the vicinity of the magnetic equator. Radio Science, 27(2):347-362, doi:10.1029/91RS01872.

     

    Kennel C F, Petschek H E. 1996. Limit on stably trapped particle fluxes. Journal of Geophysical Research, 71(1):1-28, doi:10.1029/JZ071i001p00001.

     

    Liang J, Donovan E, Spanswick E, et al. 2013. Multiprobe estimation of field line curvature radius in the equatorial magnetosphere and the use of proton precipitations in magnetosphere-ionosphere mapping. Journal of Geophysical Research:Space Physics, 118(8):4924-4945, doi:10.1002/jgra.50454.

     

    Liang J, Donovan E, Ni B, et al. 2014. On an energy-latitude dispersion pattern of ion precipitation potentially associated with magnetospheric EMIC waves. Journal of Geophysical Research:Space Physics, 119(10):8137-8160, doi:10.1002/2014JA020226.

     

    Liu Y H, Fraser B J, Menk F W. 2012. Pc2 EMIC waves generated high off the equator in the dayside outer magnetosphere. Geophysical Research Letters, 39(17):L17102, doi:10.1029/2012GL053082.

     

    Loto'aniu T M, Fraser B J, Waters C L. 2005. Propagation of electromagnetic ion cyclotron wave energy in the magnetosphere. Journal of Geophysical Research:Space Physics, 110(A7):A07214, doi:10.1029/2004JA010816.

     

    Lu Q M, Wang S. 2006. Electromagnetic waves downstream of quasi-perpendicular shocks. Journal of Geophysical Research:Space Physics, 111(A5):A05204, doi:10.1029/2005JA011319.

     

    Lu Q M, Guo F, Wang S. 2006. Magnetic spectral signatures in the terrestrial plasma depletion layer:Hybrid simulations. Journal of Geophysical Research:Space Physics, 111(A4):A04207, doi:10.1029/2005JA011405.

     

    Lu Q M, Li X. 2007. Heating of ions by low-frequency Alfven waves. Physics of Plasmas, 14(4):042303, doi:10.1063/1.2715569.

     

    Miyoshi Y, Sakaguchi K, Shiokawa K, et al. 2008. Precipitation of radiation belt electrons by EMIC waves, observed from ground and space. Geophysical Research Letters, 35(23):L23101, doi:10.1029/2008GL035727.

     

    Rauch J L, Roux A. 1982. Ray tracing of ULF waves in a multicomponent magnetospheric plasma:Consequences for the generation mechanism of ion cyclotron waves. Journal of Geophysical Research:Space Physics, 87(A10):8191-8198, doi:10.1029/JA087iA10p08191.

     

    Redmon R J, Denig W F, Kilcommons L M, et al. 2017. New DMSP database of precipitating auroral electrons and ions. Journal of Geophysical Research:Space Physics, 122(8):9056-9067, doi:10.1002/2016JA023339.

     

    Sergeev V A, Sazhina E M, Tsyganenko N A, et al. 1983. Pitch-angle scattering of energetic protons in the magnetotail current sheet as the dominant source of their isotropic precipitation into the nightside ionosphere. Planetary and Space Science, 31(10):1147-1155, doi:10.1016/0032-0633(83)90103-4.

     

    Spasojevic M, Fuselier S A. 2009. Temporal evolution of proton precipitation associated with the plasmaspheric plume. Journal of Geophysical Research:Space Physics, 114(A12):A12201, doi:10.1029/2009JA014530.

     

    Stratton J M, Harvey R J, Heyler G A. 2013. Mission overview for the radiation belt storm probes mission. Space Science Reviews, 179(1-4):29-57, doi:10.1007/s11214-012-9933-x.

     

    Su Z P, Xiao F L, Zheng H N, et al. 2011. CRRES observation and STEERB simulation of the 9 October 1990 electron radiation belt dropout event. Geophysical Research Letters, 38(6):L06106, doi:10.1029/2011GL046873.

     

    Summers D, Thorne R M. 2003. Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. Journal of Geophysical Research:Space Physics, 108(A4):1143, doi:10.1029/2002JA009489.

     

    Summers D, Ni B B, Meredith N P. 2007a. Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions:1. Theory. Journal of Geophysical Research:Space Physics, 112(A4):A04206, doi:10.1029/2006JA011801.

     

    Summers D, Ni B B, Meredith N P. 2007b. Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions:2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves. Journal of Geophysical Research:Space Physics, 112(A4):A04207, doi:10.1029/2006JA011993.

     

    Tsyganenko N A, Sitnov M I. 2005. Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. Journal of Geophysical Research:Space Physics, 110(A3):A03208, doi:10.1029/2004ja010798.

     

    Xiao F L, Chen L X, He Y H, et al. 2011. Modeling for precipitation loss of ring current protons by electromagnetic ion cyclotron waves. Journal of Atmospheric and Solar-Terrestrial Physics, 73(1):106-111, doi:10.1016/j.jastp.2010.01.007.

     

    Xiong Y, Yuan Z G, Wang J F. 2016. Energetic ions scattered into the loss cone with observations of the Cluster satellite. Annales Geophysicae, 34(2):249-257, doi:10.5194/angeo-34-249-2016.

     

    Yahnin A G, Yahnina T A. 2007. Energetic proton precipitation related to ion-cyclotron waves. Journal of Atmospheric and Solar-Terrestrial Physics, 69(14):1690-1706, doi:10.1016/j.jastp.2007.02.010.

     

    Yahnin A G, Yahnina T A, Frey H U, et al. 2009. Proton aurora related to intervals of pulsations of diminishing periods. Journal of Geophysical Research:Space Physics, 114(A12):A12215, doi:10.1029/2009JA014670.

     

    Yu X D, Yuan Z G, Wang D D, et al. 2015. In situ observations of EMIC waves in O+ band by the Van Allen Probe A. Geophysical Research Letters, 42(5):1312-1317, doi:10.1002/2015GL063250.

     

    Yuan Z G, Deng X H, Lin X, et al. 2010. Link between EMIC waves in a plasmaspheric plume and a detached sub-auroral proton arc with observations of Cluster and IMAGE satellites. Geophysical Research Letters, 37(7):L07108, doi:10.1029/2010GL042711.

     

    Yuan Z G, Xiong Y, Pang Y, et al. 2012a. Wave-particle interaction in a plasmaspheric plume observed by a Cluster satellite. Journal of Geophysical Research:Space Physics, 117(A3):A03205, doi:10.1029/2011JA017152.

     

    Yuan Z G, Xiong Y, Wang D D, et al. 2012b. Characteristics of precipitating energetic ions/electrons associated with the wave-particle interaction in the plasmaspheric plume. Journal of Geophysical Research:Space Physics, 117(A8):A08324, doi:10.1029/2012JA017783.

     

    Yuan Z G, Li M, Xiong Y, et al. 2013. Simultaneous observations of precipitating radiation belt electrons and ring current ions associated with the plasmaspheric plume. Journal of Geophysical Research:Space Physics, 118(7):4391-4399, doi:10.1002/jgra.50432.

     

    Yuan Z G, Xiong Y, Huang S Y, et al. 2014a. Cold electron heating by EMIC waves in the plasmaspheric plume with observations of the Cluster satellite. Geophysical Research Letters, 41(6):1830-1837, doi:10.1002/2014GL059241.

     

    Yuan Z G, Xiong Y, Li H M, et al. 2014b. Influence of precipitating energetic ions caused by EMIC waves on the subauroral ionospheric E region during a geomagnetic storm. Journal of Geophysical Research:Space Physics, 119(10):8462-8471, doi:10.1002/2014JA020303.

     

    Yuan Z G, Yu X D, Wang D D, et al. 2016. In situ evidence of the modification of the parallel propagation of EMIC waves by heated He+ ions. Journal of Geophysical Research:Space Physics, 121(7):6711-6717, doi:10.1002/2016JA022573.

     

    Yuan Z G, Liu K, Yu X D, et al. 2018. Precipitation of radiation belt electrons by EMIC waves with conjugated observations of NOAA and Van Allen satellites. Geophysical Research Letters, 45(23):12694-12702, doi:10.1029/2018GL08048.

     

    Yue C, Jun C W, Bortnik J, et al. 2019a. The relationship between EMIC wave properties and proton distributions based on Van Allen probes observations. Geophysical Research Letters, 46(8):4070-4078, doi:10.1029/2019GL082633.

     

    Yue C, Bortnik J, Li W, et al. 2019b. Oxygen ion dynamics in the Earth's ring current:Van Allen Probes observations. Journal of Geophysical Research:Space Physics, 124(10):7786-7798, doi:10.1029/2019JA026801.

     

    Zhou Q H, Xiao F L, Yang C, et al. 2013. Observation and modeling of magnetospheric cold electron heating by electromagnetic ion cyclotron waves. Journal of Geophysical Research:Space Physics, 118(11):6907-6914, doi:10.1002/2013JA019263.

  • 加载中

(4)

计量
  • 文章访问数:  7440
  • PDF下载数:  260
  • 施引文献:  0
出版历程
收稿日期:  2019-10-26
修回日期:  2019-12-11
上线日期:  2020-06-25

目录