2.5维起伏地表条件下频率域地空电磁正演模拟

张铭, Farquharson Colin G., 刘长胜. 2021. 2.5维起伏地表条件下频率域地空电磁正演模拟. 地球物理学报, 64(1): 327-342, doi: 10.6038/cjg2020N0182
引用本文: 张铭, Farquharson Colin G., 刘长胜. 2021. 2.5维起伏地表条件下频率域地空电磁正演模拟. 地球物理学报, 64(1): 327-342, doi: 10.6038/cjg2020N0182
ZHANG Ming, Farquharson Colin G., LIU ChangSheng. 2021. 2.5-D forward modeling of the frequency-domain ground-airborne electromagnetic response in areas with topographic relief. Chinese Journal of Geophysics (in Chinese), 64(1): 327-342, doi: 10.6038/cjg2020N0182
Citation: ZHANG Ming, Farquharson Colin G., LIU ChangSheng. 2021. 2.5-D forward modeling of the frequency-domain ground-airborne electromagnetic response in areas with topographic relief. Chinese Journal of Geophysics (in Chinese), 64(1): 327-342, doi: 10.6038/cjg2020N0182

2.5维起伏地表条件下频率域地空电磁正演模拟

  • 基金项目:

    国家自然科学基金面上项目(42074152)以及国家自然科学基金国家重大科研仪器研制项目(41827803),国家留学基金委(201706170173)联合资助

详细信息
    作者简介:

    张铭, 女, 1989年生, 博士研究生, 主要从事电磁法正反演方法研究.E-mail:zhangm_sunflower@163.com

    通讯作者: 刘长胜, 男, 1979年生, 教授, 主要从事电磁探测技术及仪器的研究.E-mail:liuchangsheng@jlu.edu.cn
  • 中图分类号: P631

2.5-D forward modeling of the frequency-domain ground-airborne electromagnetic response in areas with topographic relief

More Information
  • 频率域地空电磁探测方法是指在地面布设人工场源,在空中测量电磁场的一种高效的地球物理勘探技术.该方法具有大范围、高通过性、快速测量的优势,尤其适合崎岖山地、沙漠、沼泽、海陆交互带等复杂地貌区域的资源勘查.但是这些地区的地形起伏通常较大,因此分析地形对地空电磁响应的影响具有重要意义.本文利用有限元法对频率域地空电磁响应进行了正演计算,分析了起伏地表条件下的频率域地空电磁响应特征.首先利用傅里叶变换将2.5维问题转化成二维问题,利用伽辽金加权余量法推导了相应的离散有限元方程组.采用任意四边形单元对区域进行不均匀网格剖分,源和异常体附近网格加密处理,保证计算精度,远离目标区域网格逐渐稀疏,模拟无穷远边界,降低对计算资源的要求.在单元内进行插值,将有限元方程组变换为线性方程组,采用总场算法,利用具有一定面积的伪δ函数表达源电流分布,源项近似为分布在以电偶极源为中心的25个节点上.通过求解线性方程组得到波数域电磁响应,再对波数域电磁场响应进行反傅里叶变换从而获得空间域2.5维频率域电磁场值.通过对比2.5维正演结果与均匀半空间解析解,验证了本文算法的精度,同时本文还对地空电磁场与地面电磁场的响应特性进行了对比.

  • 加载中
  • 图 1 

    地电模型与坐标示意图

    Figure 1. 

    Schematic diagram of geo-electric model and coordinate

    图 2 

    单元编号和坐标变换关系示意图

    Figure 2. 

    Schematic diagram of cell numbering and coordinate conversion

    图 3 

    2.5维有限元计算结果与解析解对比图

    Figure 3. 

    Comparisons between analytical results and 2.5D FEM

    图 4 

    无地形异常体模型及网格剖分正视图

    Figure 4. 

    Front view of target earth model without topography

    图 5 

    无地形异常体模型电磁场响应曲线

    Figure 5. 

    Electromagnetic response curves of target earth model without topography

    图 6 

    带地形无异常体模型正视图

    Figure 6. 

    Front view of topography earth model

    图 7 

    测线布置方式示意图

    Figure 7. 

    Schematic diagram of survey line configuration

    图 8 

    带地形无异常体模型,地面测量时的电磁场响应曲线

    Figure 8. 

    Electromagnetic response curves of topography earth model without target when measured on ground surface

    图 9 

    带地形无异常体模型,空中随地形测量时的电磁场响应曲线

    Figure 9. 

    Electromagnetic response curves of topography earth model without target when measured in the air along topography

    图 10 

    带地形无异常体模型,空中同一高度测量时的电磁场响应曲线

    Figure 10. 

    Electromagnetic response curves of topography earth model without target when measured in the air at constant height

    图 11 

    带地形异常体模型正视图

    Figure 11. 

    Front view of topography earth model with target

    图 12 

    地面测量时,凸地形异常体模型的电磁场响应曲线

    Figure 12. 

    Electromagnetic response curves of convex topography target earth model when measured on ground surface

    图 13 

    地面测量时,凹地形异常体模型的电磁场响应曲线

    Figure 13. 

    Electromagnetic response curves of concave topography target earth model when measured on ground surface

    图 14 

    空中随地形测量时,带地形异常体模型的磁场响应曲线

    Figure 14. 

    Magnetic field curves of topography target earth model when measured in the air along the topography

    图 15 

    空中同一高度测量时,带地形异常体模型的磁场响应曲线

    Figure 15. 

    Magnetic field curves of topography target earth model when measured in the air at constant height

    表 1 

    异常体模型参数

    Table 1. 

    Parameters of target earth model

    模型参数 背景电阻率/Ωm 异常体电阻率/Ωm 异常体埋深/m 异常体横向位置x/m 异常体纵向位置z/m
    高阻体模型 100 10000 183 7915~8415 -183~-433
    低阻体模型 100 50 183 7915~8415 -183~-433
    下载: 导出CSV

    表 2 

    带地形无异常体模型参数

    Table 2. 

    Parameters of topography earth model without target

    模型参数 异常体横向位置x/m 异常体纵向位置z/m
    凹地形模型 7665~8665 -50~0
    凸地形模型 7665~8665 0 ~50
    下载: 导出CSV
  •  

    Abdallah S, Mogi T, Kim H J. 2017. Three-dimensional inversion of GREATEM data:application to GREATEM survey data from Kujukuri Beach, Japan. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(10):4321-4327. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020414745360.html

     

    Cagniard L. 1953. Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics, 18(3):605-635. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=gsgpy&resid=18/3/605

     

    Di Q Y, Unsworth M, Wang M Y. 2004. 2.5-D CSAMT modeling with the finite element method over 2-D complex earth media. Chinese Journal of Geophysics (in Chinese), 47(4):723-730. http://onlinelibrary.wiley.com/doi/10.1002/cjg2.3555/full

     

    Di Q Y, Wang R. 2008. Controlled Source Audio-Frequency Magnetotellurics (in Chinese). Beijing:Science Press.

     

    Elliott P. 1998. The principles and practice of FLAIRTEM. Exploration Geophysics, 29(2):58-60. http://www.tandfonline.com/doi/abs/10.1071/EG998058

     

    Ji Y J, Wang Y, Xu J, et al. 2013. Development and application of the grounded long wire source airborne electromagnetic exploration system based on an unmanned airship. Chinese Journal of Geophysics (in Chinese), 56(11):3640-3650, doi:10.6038/cjg20131105.

     

    Jin J M. 1998. Electromagnetic Finite-Element Method (in Chinese). Wang J G trans. Xi'an: Xidian University Press.

     

    Kang L L. 2019. Research on suppression technology of motion-induce noise in ground-airborne frequency-domain electromagnetic system[Ph. D. thesis] (in Chinese). Changchun: Jilin University.

     

    Li S Y, Lin J, Yang G H, et al. 2013. Ground-Airborne electromagnetic signals de-noising using a combined wavelet transform algorithm. Chinese Journal of Geophysics (in Chinese), 56(9):3145-3152, doi:10.6038/cjg20130927.

     

    Li X, Zhang Y Y, Lu X S. 2015. Inverse synthetic aperture imaging of ground-airborne transient electromagnetic method with a galvanic source. Chinese Journal of Geophysics (in Chinese), 58(1):277-288, doi:10.6038/cjg20150125.

     

    Li Y G, Key K. 2007. 2D marine controlled-source electromagnetic modeling:part 1-an adaptive finite-element algorithm. Geophysics, 72(2):WA51-WA62. http://adsabs.harvard.edu/abs/2007geop...72...51l

     

    Lin J, Kang L L, Liu C S, et al. 2019. The frequency-domain airborne electromagnetic method with a grounded electrical source. Geophysics, 84(4):E269-E280. http://www.researchgate.net/publication/332836542_The_frequency-domain_airborne_electromagnetic_method_with_a_grounded_electrical_source

     

    Lu X Y, Unsworth M, Booker J. 1999. Rapid relaxation inversion of CSAMT data. Geophysical Journal International, 138(2):381-392.

     

    Mitsuhata Y. 2000. 2-D electromagnetic modeling by finite-element method with a dipole source and topography. Geophysics, 65(2):465-475. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=GPYSA7000065000002000465000001&idtype=cvips&gifs=Yes

     

    Mogi T, Tanaka Y, Kusunoki K I, et al. 1998. Development of grounded electrical source airborne transient EM (GREATEM). Exploration Geophysics, 29(1-2):61-64. http://www.publish.csiro.au/eg/EG998061

     

    Mogi T, Kusunoki K I, Kaieda H, et al. 2009. Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of Mount Bandai, north-eastern Japan. Exploration Geophysics, 40(1):1-7. http://adsabs.harvard.edu/abs/2009ExG....40....1M

     

    Nam M J, Kim H J, Song Y, et al. 2007. 3D magnetotelluric modelling including surface topography. Geophysical Prospecting, 55(2):277-287. http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2478.2007.00614.x/full

     

    Newman G A, Alumbaugh D L. 1995. Frequency-domain modelling of airborne electromagnetic responses using staggered finite differences. Geophysical Prospecting, 43(8):1021-1042. http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2478.1995.tb00294.x/full

     

    Pemberton R H, Seige H O, Bosschart R A. 1970. Deep penetrating airborne Turair EM system. Society of Exploration Geophysicists, 40th Annual International Meeting. New Orleans, LA, United States.

     

    Sasaki Y, Nakazato H. 2003. Topographic effects in frequency-domain helicopter-borne electromagnetics. Exploration Geophysics, 34(1-2):24-28. http://www.tandfonline.com/doi/abs/10.1071/EG03024

     

    Smith R S, Annan A P, McGowan P D. 2001. A comparison of data from airborne, semi-airborne, and ground electromagnetic systems. Geophysics, 66(5):1379-1385. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=GPYSA7000066000005001379000001&idtype=cvips&prog=normal

     

    Thomson S, Fountain D, Watts T. 2007. Airborne geophysics-evolution and revolution.//5th International Conference on Mineral Exploration. September, Toronto, Canada.

     

    Wu X, Xue G Q, Fang G Y, et al. 2019. The development and applications of the semi-airborne electromagnetic system in China. IEEE Access, 7(99):104956-104966. http://www.researchgate.net/publication/334686902_The_Development_and_Applications_of_the_Semi-Airborne_Electromagnetic_System_in_China

     

    Xu S Z. 1994. The Finite Element Method in Geophysics (in Chinese). Beijing:Science Press.

     

    Xu Y. 2014. Study about 1D forward and inversion of SAEM[Master's thesis] (in Chinese). Chengdu: Chengdu University of Technology.

     

    Yin C C, Zhang B, Liu Y H, et al. 2015. 2.5-D forward modeling of the time-domain airborne EM system in areas with topographic relief. Chinese Journal of Geophysics (in Chinese), 58(4):1411-1424, doi:10.6038/cjg20150427.

     

    Zhang J F, Zhi Q Q, Li X, et al. 2013. 2.5D finite element numerical simulation for electric dipole source on ridge terrain. The Chinese Journal of Nonferrous Metals (in Chinese), 23(9):2540-2550. http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-ZYXZ201309025.htm

     

    Zhang Y Y. 2013. Study on multi-component interpretation and full field apparent resistivity of semi-airborne transient electromagnetic method with electric dipole on the surface[Ph. D. thesis] (in Chinese). Xi'an: Chang'an University.

     

    Zhou H G, Lin J, Liu C S, et al. 2016. Interaction between two adjacent grounded sources in frequency domain semi-airborne electromagnetic survey. Review of Scientific Instruments, 87(3):034503. http://europepmc.org/abstract/MED/27036795

     

    底青云, Unsworth M, 王妙月. 2004.复杂介质有限元法2.5维可控源音频大地电磁法数值模拟.地球物理学报, 47(4):723-730. http://www.geophy.cn//CN/abstract/abstract1535.shtml

     

    底青云, 王若. 2008.可控源音频大地电磁数据正反演及方法应用.北京:科学出版社.

     

    嵇艳鞠, 王远, 徐江等. 2013.无人飞艇长导线源时域地空电磁勘探系统及其应用.地球物理学报, 56(11):3640-3650, doi:10.6038/cjg20131105. http://www.geophy.cn//CN/abstract/abstract9876.shtml

     

    金建铭. 1998.电磁场有限元方法.王建国译.西安: 西安电子科技大学出版社.

     

    康利利. 2019.地空频率域电磁探测系统运动噪声抑制技术研究[博士论文].长春: 吉林大学.

     

    李肃义, 林君, 阳贵红等. 2013.电性源时域地空电磁数据小波去噪方法研究.地球物理学报, 56(9):3145-3152, doi:10.6038/cjg20130927. http://www.geophy.cn//CN/abstract/abstract9764.shtml

     

    李貅, 张莹莹, 卢绪山等. 2015.电性源瞬变电磁地空逆合成孔径成像.地球物理学报, 58(1):277-288, doi:10.6038/cjg20150125. http://www.geophy.cn//CN/abstract/abstract11177.shtml

     

    徐世浙. 1994.地球物理中的有限单元法.北京:科学出版社.

     

    许洋. 2014.半航空电磁一维正反演研究[硕士论文].成都: 成都理工大学.

     

    殷长春, 张博, 刘云鹤等. 2015. 2.5维起伏地表条件下时间域航空电磁正演模拟.地球物理学报, 58(4):1411-1424, doi:10.6038/cjg20150427. http://www.geophy.cn//CN/abstract/abstract11402.shtml

     

    张继锋, 智庆全, 李貅等. 2013.起伏地形电偶源2.5维有限元数值模拟.中国有色金属学报, 23(9):2540-2550. http://d.wanfangdata.com.cn/Periodical/zgysjsxb201309025

     

    张莹莹. 2013.水平电偶源地空系统瞬变电磁法多分量解释技术及全域视电阻率定义研究[硕士论文].西安: 长安大学.

  • 加载中

(15)

(2)

计量
  • 文章访问数:  1631
  • PDF下载数:  378
  • 施引文献:  0
出版历程
收稿日期:  2020-02-14
修回日期:  2020-07-28
上线日期:  2021-01-10

目录