陆地可控源电磁法探测效果的频率响应

万伟, 唐新功, 黄清华. 2019. 陆地可控源电磁法探测效果的频率响应. 地球物理学报, 62(12): 4846-4859, doi: 10.6038/cjg2019N0069
引用本文: 万伟, 唐新功, 黄清华. 2019. 陆地可控源电磁法探测效果的频率响应. 地球物理学报, 62(12): 4846-4859, doi: 10.6038/cjg2019N0069
WAN Wei, TANG XinGong, HUANG QingHua. 2019. Frequency effect on land CSEM sounding. Chinese Journal of Geophysics (in Chinese), 62(12): 4846-4859, doi: 10.6038/cjg2019N0069
Citation: WAN Wei, TANG XinGong, HUANG QingHua. 2019. Frequency effect on land CSEM sounding. Chinese Journal of Geophysics (in Chinese), 62(12): 4846-4859, doi: 10.6038/cjg2019N0069

陆地可控源电磁法探测效果的频率响应

  • 基金项目:

    国家自然科学基金(41574104,41674107)资助

详细信息
    作者简介:

    万伟, 男, 1989年生, 博士研究生, 研究方向为可控源电磁法正反演及应用研究.E-mail:wanei_py@pku.edu.cn

    通讯作者: 黄清华, 男, 教授, 1990年毕业于中国科学技术大学, 1999年获日本大阪大学博士学位, 主要从事地球电磁学、地震物理学方面的教学与科研工作.E-mail:huangq@pku.edu.cn
  • 中图分类号: P631

Frequency effect on land CSEM sounding

More Information
  • 陆地可控源电磁法的观测资料可依据频段范围近似地划分为近区场、中间区场及远区场,但采用测量相互正交电、磁分量,并计算视电阻率的资料处理方式只适用于远区场数据.为更有效地利用陆地可控源电磁法不同区间场的观测资料,本文结合三维数值模拟技术并采用电场分量直接进行反演的策略,对不同区间电场的响应特征与探测效果进行了分析.数值模拟结果表明:近区电场的异常响应最明显,异常响应不随频率发生显著变化,但纵向分辨能力差;远区电场异常响应随频率发生显著变化,其探测深度取决于频率的高低;中间区场较为复杂,地表电场异常响应的等值线中心并不是位于异常体中心正上方,而是在沿场传播方向上向异常体与围岩的分界面处偏移,并且发现中间区场资料的加入会影响反演结果的准确性.综合合成数据和野外实测资料的反演结果,发现结合近区场和远区场资料而舍弃中间区场资料的反演效果更佳,这为陆地可控源电磁法资料的反演解释提供了一种有效途径.

  • 加载中
  • 图 1 

    三维模型及对应的测点分布图

    Figure 1. 

    3D model and the distribution of the receivers

    图 2 

    依据均匀半空间电场Ex响应特征划分近区场、中间区场以及远区场

    Figure 2. 

    The near-zone field, middle-zone field and far-zone field are divided according to the characteristic of the half-space electric field Ex response

    图 3 

    近区场(0.2 Hz)、中间区场(20 Hz)、远区场(1260 Hz)在地表测区ΔEx与Δψ分布图

    Figure 3. 

    The relative changes of Ex amplitude ΔEx and phase Δψ of different frequencies at different zones for all observation points

    图 4 

    测点A与测点B的ΔEx与Δψ随频率变化曲线

    Figure 4. 

    The relative changes of Ex amplitude (ΔEx) and phase (Δψ) of 3D anomaly model to background layered model at observation points A and B

    图 5 

    剖面x=0 m不同频率的电场矢量图

    Figure 5. 

    Electric field vector of different frequencies at profile x=0 m

    图 6 

    各单频率反演结果(x=0 m)

    Figure 6. 

    Inversion results for the single-frequency at profile x=0 m

    图 7 

    各单频率反演的模型响应数据与合成数据的Ex幅值比

    Figure 7. 

    Amplitude ratio of the Ex between the response data of the inversion model and synthetic data for the single-frequency

    图 8 

    组合不同场区数据的反演结果(剖面x=0 m)

    Figure 8. 

    The inversion results for different frequency combinations at profile x=0 m

    图 9 

    可控源电磁法野外观测布置

    Figure 9. 

    Layout of two field land CSEM observation systems

    图 10 

    基于发射源T2采集各个测点视电阻率

    Figure 10. 

    Apparent resistivity of each observation point based on the transmitter T2

    图 11 

    图 10各测点视电阻率一维反演结果构建的三维电阻率模型

    Figure 11. 

    3D resistivity model constructed by apparent resistivity (Fig. 10) 1D inversion results

    图 12 

    源T1激发下各测点电场Ex幅值

    Figure 12. 

    Ex amplitude of each observation point based on transmitter T1

    图 13 

    参考电阻率模型合成数据反演结果(剖面z=35 m,发射源为T1)

    Figure 13. 

    Synthetic inversion results of the reference model based on transmitter T1 (z=35 m)

    图 14 

    发射源T1激发下观测数据(图 12b)反演结果(剖面z=35 m)

    Figure 14. 

    Inversion results of observation data (Fig. 12b) based on transmitter T1 (z=35 m)

  •  

    Alumbaugh D L, Newman G A, Prevost L, et al. 1996. Three-dimensional wideband electromagnetic modeling on massively parallel computers. Radio Science, 31(1):1-23, doi:10.1029/95RS02815.

     

    Avdeev D, Avdeeva A. 2009.3D magnetotelluric inversion using a limited-memory quasi-Newton optimization. Geophysics, 74(3):F45-F57, doi:10.1190/1.3114023.

     

    Commer M, Newman G A. 2009. Three-dimensional controlled-source electromagnetic and magnetotelluric joint inversion. Geophysical Journal International, 178(3):1305-1316, doi:10.1111/j.1365-246X.2009.04216.x.

     

    Constable S. 2010. Ten years of marine CSEM for hydrocarbon exploration. Geophysics, 73(5):75A67-75A81, doi:10.1190/1.3483451.

     

    Constable S, Orange A, Key K. 2015. And the geophysicist replied:"Which model do you want?". Geophysics, 80(3):E197-E212, doi:10.1190/geo2014-0381.1.

     

    Constable S C, Parker R L, Constable C G. 1987. Occam's inversion:A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52(3):289-300, doi:10.1190/1.1442303.

     

    Dell'Aversana P, Vivier M. 2009. Expanding the frequency spectrum in marine CSEM applications. Geophysical Prospecting, 57(4):573-590, doi:10.1111/j.1365-2478.2008.00777.x.

     

    Di Q Y, Xu C, Fu C M, et al. 2015. Surface electromagnetic prospecting system (SEP) contrast test in Caosiyao molybdenum mine, inner Mongolia. Chinese Journal of Geophysics (in Chinese), 58(8):2654-2663, doi:10.6038/cjg20150805.

     

    Edwards N. 2005. Marine controlled source electromagnetics:principles, methodologies, future commercial applications. Surveys in Geophysics, 26(6):675-700, doi:10.1007/s10712-005-1830-3.

     

    Egbert G D, Kelbert A. 2012. Computational recipes for electromagnetic inverse problems. Geophysical Journal International, 189(1):251-267, doi:10.1111/j.1365-246X.2011.05347.x.

     

    Eidesmo T, Ellingsrud S, MacGregor L M, et al. 2002. Sea bed logging (SBL), a new method for remote and direct identification of hydrocarbon filled layers in deepwater areas. First Break, 20(3):144-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8492c69e7708b3ee6f9690aef28bdbed

     

    Ellingsrud S, Eidesmo T, Johansen S, et al. 2002. Remote sensing of hydrocarbon layers by seabed logging (SBL):Results from a cruise offshore Angola. The Leading Edge, 21(10):972-982, doi:10.1190/1.1518433.

     

    Fanavoll S, Gabrielsen P T, Ellingsrud S. 2014. CSEM as a tool for better exploration decisions:case studies from the Barents Sea, Norwegian continental shelf. Interpretation, 2(3):SH55-SH66, doi:10.1190/INT-2013-0171.1.

     

    Freund R W, Nachtigal N M. 1991. QMR:a quasi-minimal residual method for non-Hermitian linear systems. Numerische Mathematik, 60(1):315-339, doi:10.1007/BF01385726.

     

    Goldstein M A, Strangway D W. 1975. Audio-frequency magnetotellurics with a grounded electric dipole source. Geophysics, 40(4):669-683, doi:10.1190/1.1440558.

     

    Grayver A V, Streich R, Ritter O. 2014.3D inversion and resolution analysis of land-based CSEM data from the Ketzin CO2 storage formation. Geophysics, 79(2):E101-E114, doi:10.1190/GEO2013-0184.1.

     

    Guo Z W, Dong H F, Liu J X. 2016. Comparison of marine controlled-source electromagnetic data acquisition systems by a reservoir sensitivity index:analyzing the effect of water depths. Acta Oceanologica Sinica, 35(11):113-119, doi:10.1007/s13131-016-0954-2.

     

    Guo Z W, Liu J X, Liao J P, et al. 2018. Comparison of detection capability by the controlled source electromagnetic method for hydrocarbon exploration. Energies, 11(7):1839. doi: 10.3390/en11071839

     

    He J S. 2010. Wide field electromagnetic sounding methods. Journal of Central South University (Science and Technology) (in Chinese), 41(3):1065-1072. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201003042

     

    Kelbert A, Meqbel N, Egbert G D, et al. 2014. ModEM:A modular system for inversion of electromagnetic geophysical data. Computers & Geosciences, 66:40-53, doi:10.1016/j.cageo.2014.01.010.

     

    Key K. 2009.1D inversion of multicomponent, multifrequency marine CSEM data:Methodology and synthetic studies for resolving thin resistive layers. Geophysics, 74(2):F9-F20, doi:10.1190/1.3058434.

     

    Key K, Lockwood A. 2010. Determining the orientation of marine CSEM receivers using orthogonal Procrustes rotation analysis. Geophysics, 75(3):F63-F70, doi:10.1190/1.3378765.

     

    Li Z H, Huang Q H, Wang Y B. 2009. A 3-D staggered grid PSTD method for borehole radar simulations in dispersive media. Chinese Journal of Geophysics (in Chinese), 52(7):1915-1922, doi:10.3969/j.issn.0001-5733.2009.07.027.

     

    Luan X D, Di Q Y, Lei D. 2018. Near-field correction of CSAMT data based on Newton iteration method and GA method. Chinese Journal of Geophysics (in Chinese), 61(10):4148-4159, doi:10.6038/cjg2018L0224.

     

    MacGregor L, Bouchrara S, Tomlinson J, et al. 2012. Integrated analysis of CSEM, seismic and well log data for prospect appraisal:a case study from West Africa. First Break, 30(4):43-48. http://cn.bing.com/academic/profile?id=c53f32e2eff51490b63980181682b594&encoded=0&v=paper_preview&mkt=zh-cn

     

    Mackie R L, Madden T R, Wannamaker P E. 1993. Three-dimensional magnetotelluric modeling using difference equations; Theory and comparisons to integral equation solutions. Geophysics, 58(2):215-226, doi:10.1190/1.1443407.

     

    Mackie R L, Smith J T, Madden T R. 1994. Three-dimensional electromagnetic modeling using finite difference equations:The magnetotelluric example. Radio Science, 29(4):923-935, doi:10.1029/94RS00326.

     

    Mittet R, Morten J P. 2012. Detection and imaging sensitivity of the marine CSEM method. Geophysics, 77(6):E411-E425, doi:10.1190/geo2012-0016.1.

     

    Nabighian M N. 1988. Electromagnetic methods in applied geophysics: Vol 2: Application. Tulsa: Society of Exploration Geophysicists.

     

    Newman G A, Alumbaugh D L. 1995. Frequency-domain modelling of airborne electromagnetic responses using staggered finite differences. Geophysical Prospecting, 43(8):1021-1042, doi:10.1111/j.1365-2478.1995.tb00294.x.

     

    Newman G A, Hoversten G M. 2000. Solution strategies for two-and three-dimensional electromagnetic inverse problems. Inverse Problems, 16(5):1357-1375, doi:10.1088/0266-5611/16/5/314.

     

    Oldenburg D W, Haber E, Shekhtman R. 2013. Three-dimensional inversion of multisource time domain electromagnetic data. Geophysics, 78(1):E47-E57, doi:10.1190/GEO2012-0131.1.

     

    Peng R H, Hu X Y, Han B. 2016.3D inversion of frequency-domain CSEM data based on Gauss-Newton optimization. Chinese Journal of Geophysics (in Chinese), 59(9):3470-3481, doi:10.6038/cjg20160929.

     

    Sandberg S K, Hohmann G W. 1982. Controlled-source audiomagnetotellurics in geothermal exploration. Geophysics, 47(1):100-116, doi:10.1190/1.1441272.

     

    Schaller A M, Streich R, Drijkoningen G G, et al. 2018. A land-based controlled-source electromagnetic method for oil field exploration:An example from the Schoonebeek oil field. Geophysics, 83(2):WB1-WB71, doi:10.1190/geo2017-0022.1.

     

    Schwarzbach C, Haber E. 2013. Finite element based inversion for time-harmonic electromagnetic problems. Geophysical Journal International, 193(2):615-634, doi:1093/gji/ggt006.

     

    Streich R. 2009.3D finite-difference frequency-domain modeling of controlled-source electromagnetic data:Direct solution and optimization for high accuracy. Geophysics, 74(5):F95-F105, doi:10.1190/1.3196241.

     

    Streich R. 2016. Controlled-source electromagnetic approaches for hydrocarbon exploration and monitoring on land. Surveys in Geophysics, 37(1):47-80, doi:10.1007/s10712-015-9336-0.

     

    Tikhonov A N, Arsenin V Y. 1977. Solutions of Ill-Posed Problems. Washington, D.C., USA: W. H. Winston and Sons.

     

    Vilamajó E, Queralt P, Ledo J, et al. 2013. Feasibility of monitoring the Hontomín (Burgos, Spain) CO2 storage site using a deep EM source. Surveys in Geophysics, 34(4):441-461, doi:10.1007/s10712-013-9238-y.

     

    Wang X B, Chen J C, Guo Q S, et al. 2013. Research of the CSAMT exploration mode and experiment for the coalbed methane enrichment region in the north Qinshui basin. Chinese Journal of Geophysics (in Chinese), 56(12):4310-4323, doi:10.6038/cjg20131233.

     

    Weng A H, Liu Y H, Jia D Y, et al. 2012. Three-dimensional controlled source electromagnetic inversion using non-linear conjugate gradients. Chinese Journal of Geophysics (in Chinese), 55(10):3506-3515, doi:10.6038/j.issn.0001-5733.2012.10.034.

     

    Weng A H, Li D J, Li Y B, et al. 2015. Selection of parameter types in Controlled Source Electromagnetic Method. Chinese Journal of Geophysics (in Chinese), 58(2):697-708, doi:10.6038/cjg20150230.

     

    Wirianto M, Mulder W A, Slob E C. 2010. A feasibility study of land CSEM reservoir monitoring in a complex 3-D model. Geophysical Journal International, 181(2):741-755, doi:10.1111/j.1365-246X.2010.04544.x.

     

    Yee K. 1966. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on Antennas and Propagation, 14(3):302-307, doi:10.1109/TAP.1966.1138693.

     

    Zhang J W, Liang X, Ge Q, et al. 2017. Calculation method about hydraulic conductivity of Quaternary aquitard in Jianghan plain. Earth Science (in Chinese), 42(5):761-770, doi:10.3799/dqkx.2017.064.

     

    Zhao N, Wang X B, Qin C, et al. 2016.3D frequency-domain CSEM inversion. Chinese Journal of Geophysics (in Chinese), 59(1):330-341, doi:10.6038/cjg20160128.

     

    底青云, 许诚, 付长民等. 2015.地面电磁探测(SEP)系统对比试验--内蒙曹四夭钼矿.地球物理学报, 58(8):2654-2663, doi:10.6038/cjg20150805. http://www.geophy.cn//CN/abstract/abstract11724.shtml

     

    何继善. 2010.广域电磁测深法研究.中南大学学报(自然科学版), 41(3):1065-1072. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201003042

     

    李展辉, 黄清华, 王彦宾. 2009.三维错格时域伪谱法在频散介质井中雷达模拟中的应用.地球物理学报, 52(7):1915-1922, doi:10.3969/j.issn.0001-5733.2009.07.027. http://www.geophy.cn//CN/abstract/abstract1102.shtml

     

    栾晓东, 底青云, 雷达. 2018.基于牛顿迭代法和遗传算法的CSAMT近场校正.地球物理学报, 61(10):4148-4159, doi:10.6038/cjg2018L0224. http://www.geophy.cn//CN/abstract/abstract14721.shtml

     

    彭荣华, 胡祥云, 韩波. 2016.基于高斯牛顿法的频率域可控源电磁三维反演研究.地球物理学报, 59(9):3470-3481, doi:10.6038/cjg20160929. http://www.geophy.cn//CN/abstract/abstract13071.shtml

     

    王绪本, 陈进超, 郭全仕等. 2013.沁水盆地北部煤层气富集区CSAMT勘探试验研究.地球物理学报, 56(12):4310-4323, doi:10.6038/cjg20131233. http://www.geophy.cn//CN/abstract/abstract9999.shtml

     

    翁爱华, 刘云鹤, 贾定宇等. 2012.地面可控源频率测深三维非线性共轭梯度反演.地球物理学报, 55(10):3506-3515, doi:10.6038/j.issn.0001-5733.2012.10.034. http://www.geophy.cn//CN/abstract/abstract8990.shtml

     

    翁爱华, 李大俊, 李亚彬等. 2015.数据类型对三维地面可控源电磁勘探效果的影响.地球物理学报, 58(2):697-708, doi:10.6038/cjg20150230. http://www.geophy.cn//CN/abstract/abstract11266.shtml

     

    张婧玮, 梁杏, 葛勤等. 2017.江汉平原第四系弱透水层渗透系数求算方法.地球科学, 42(5):761-770, doi:10.3799/dqkx.2017.064.

     

    赵宁, 王绪本, 秦策等. 2016.三维频率域可控源电磁反演研究.地球物理学报, 59(1):330-341, doi:10.6038/cjg20160128. http://www.geophy.cn//CN/abstract/abstract12112.shtml

  • 加载中

(14)

计量
  • 文章访问数:  668
  • PDF下载数:  344
  • 施引文献:  0
出版历程
收稿日期:  2019-02-26
修回日期:  2019-07-02
上线日期:  2019-12-05

目录