-
摘要:
陆地可控源电磁法的观测资料可依据频段范围近似地划分为近区场、中间区场及远区场,但采用测量相互正交电、磁分量,并计算视电阻率的资料处理方式只适用于远区场数据.为更有效地利用陆地可控源电磁法不同区间场的观测资料,本文结合三维数值模拟技术并采用电场分量直接进行反演的策略,对不同区间电场的响应特征与探测效果进行了分析.数值模拟结果表明:近区电场的异常响应最明显,异常响应不随频率发生显著变化,但纵向分辨能力差;远区电场异常响应随频率发生显著变化,其探测深度取决于频率的高低;中间区场较为复杂,地表电场异常响应的等值线中心并不是位于异常体中心正上方,而是在沿场传播方向上向异常体与围岩的分界面处偏移,并且发现中间区场资料的加入会影响反演结果的准确性.综合合成数据和野外实测资料的反演结果,发现结合近区场和远区场资料而舍弃中间区场资料的反演效果更佳,这为陆地可控源电磁法资料的反演解释提供了一种有效途径.
Abstract:The land controlled-source electromagnetic (CSEM) method observes the electromagnetic field of wide frequency band excited by single source. According to the physical nature of the electromagnetic field in frequency domain,the observation of the land CSEM method can be approximately divided into three sections:the near-zone field,the middle-zone field and the far-zone field. The conventional land CSEM method such as CSAMT only uses the far-zone field data,which possibly fails to utilize the information contained in the near-zone and middle-zone. We have developed 3D forward and inversion tool for land CSEM method,which is based on the open source EM modular platform ModEM. Our algorithm solves the primary and secondary electrical field separately in the forward modeling,and directly fits Ex component in all of the three zones in the inversion scheme. After discussing the response of electric field Ex in different field zones,we investigate the best frequency combinations for 3D inversion. The 3D CSEM numerical simulation shows that in near-zone field the abnormal response of Ex has large amplitude and does not change with frequency significantly,and the inversion result of the synthetic data shows that the near-zone field has poor resolution in depth. The simulation also shows that the center of the surface Ex abnormal response contour in the middle-zone field is not located above the center of the anomaly body,but is offset from the transverse electrical interface of resistivity model,which results in the deviation of the inverted resistivity anomaly from the actual position in the synthetic inversion test. The far-zone field Ex abnormal response varies with frequency,which can be used to distinguish the electrical layers at different depths. By comparing and analyzing the inversion results of different frequency combinations of synthetic data and field data,we find that for land CSEM 3D inversion the best frequency choice is to combine the data in the near-zone field and far-zone field together,abandon the data in middle-zone field.
-
Key words:
- Land CSEM /
- Field-zone /
- Frequency combination /
- 3D forward and inversion
-
-
-
Alumbaugh D L, Newman G A, Prevost L, et al. 1996. Three-dimensional wideband electromagnetic modeling on massively parallel computers. Radio Science, 31(1):1-23, doi:10.1029/95RS02815.
Avdeev D, Avdeeva A. 2009.3D magnetotelluric inversion using a limited-memory quasi-Newton optimization. Geophysics, 74(3):F45-F57, doi:10.1190/1.3114023.
Commer M, Newman G A. 2009. Three-dimensional controlled-source electromagnetic and magnetotelluric joint inversion. Geophysical Journal International, 178(3):1305-1316, doi:10.1111/j.1365-246X.2009.04216.x.
Constable S. 2010. Ten years of marine CSEM for hydrocarbon exploration. Geophysics, 73(5):75A67-75A81, doi:10.1190/1.3483451.
Constable S, Orange A, Key K. 2015. And the geophysicist replied:"Which model do you want?". Geophysics, 80(3):E197-E212, doi:10.1190/geo2014-0381.1.
Constable S C, Parker R L, Constable C G. 1987. Occam's inversion:A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52(3):289-300, doi:10.1190/1.1442303.
Dell'Aversana P, Vivier M. 2009. Expanding the frequency spectrum in marine CSEM applications. Geophysical Prospecting, 57(4):573-590, doi:10.1111/j.1365-2478.2008.00777.x.
Di Q Y, Xu C, Fu C M, et al. 2015. Surface electromagnetic prospecting system (SEP) contrast test in Caosiyao molybdenum mine, inner Mongolia. Chinese Journal of Geophysics (in Chinese), 58(8):2654-2663, doi:10.6038/cjg20150805.
Edwards N. 2005. Marine controlled source electromagnetics:principles, methodologies, future commercial applications. Surveys in Geophysics, 26(6):675-700, doi:10.1007/s10712-005-1830-3.
Egbert G D, Kelbert A. 2012. Computational recipes for electromagnetic inverse problems. Geophysical Journal International, 189(1):251-267, doi:10.1111/j.1365-246X.2011.05347.x.
Eidesmo T, Ellingsrud S, MacGregor L M, et al. 2002. Sea bed logging (SBL), a new method for remote and direct identification of hydrocarbon filled layers in deepwater areas. First Break, 20(3):144-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8492c69e7708b3ee6f9690aef28bdbed
Ellingsrud S, Eidesmo T, Johansen S, et al. 2002. Remote sensing of hydrocarbon layers by seabed logging (SBL):Results from a cruise offshore Angola. The Leading Edge, 21(10):972-982, doi:10.1190/1.1518433.
Fanavoll S, Gabrielsen P T, Ellingsrud S. 2014. CSEM as a tool for better exploration decisions:case studies from the Barents Sea, Norwegian continental shelf. Interpretation, 2(3):SH55-SH66, doi:10.1190/INT-2013-0171.1.
Freund R W, Nachtigal N M. 1991. QMR:a quasi-minimal residual method for non-Hermitian linear systems. Numerische Mathematik, 60(1):315-339, doi:10.1007/BF01385726.
Goldstein M A, Strangway D W. 1975. Audio-frequency magnetotellurics with a grounded electric dipole source. Geophysics, 40(4):669-683, doi:10.1190/1.1440558.
Grayver A V, Streich R, Ritter O. 2014.3D inversion and resolution analysis of land-based CSEM data from the Ketzin CO2 storage formation. Geophysics, 79(2):E101-E114, doi:10.1190/GEO2013-0184.1.
Guo Z W, Dong H F, Liu J X. 2016. Comparison of marine controlled-source electromagnetic data acquisition systems by a reservoir sensitivity index:analyzing the effect of water depths. Acta Oceanologica Sinica, 35(11):113-119, doi:10.1007/s13131-016-0954-2.
Guo Z W, Liu J X, Liao J P, et al. 2018. Comparison of detection capability by the controlled source electromagnetic method for hydrocarbon exploration. Energies, 11(7):1839. doi: 10.3390/en11071839
He J S. 2010. Wide field electromagnetic sounding methods. Journal of Central South University (Science and Technology) (in Chinese), 41(3):1065-1072. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201003042
Kelbert A, Meqbel N, Egbert G D, et al. 2014. ModEM:A modular system for inversion of electromagnetic geophysical data. Computers & Geosciences, 66:40-53, doi:10.1016/j.cageo.2014.01.010.
Key K. 2009.1D inversion of multicomponent, multifrequency marine CSEM data:Methodology and synthetic studies for resolving thin resistive layers. Geophysics, 74(2):F9-F20, doi:10.1190/1.3058434.
Key K, Lockwood A. 2010. Determining the orientation of marine CSEM receivers using orthogonal Procrustes rotation analysis. Geophysics, 75(3):F63-F70, doi:10.1190/1.3378765.
Li Z H, Huang Q H, Wang Y B. 2009. A 3-D staggered grid PSTD method for borehole radar simulations in dispersive media. Chinese Journal of Geophysics (in Chinese), 52(7):1915-1922, doi:10.3969/j.issn.0001-5733.2009.07.027.
Luan X D, Di Q Y, Lei D. 2018. Near-field correction of CSAMT data based on Newton iteration method and GA method. Chinese Journal of Geophysics (in Chinese), 61(10):4148-4159, doi:10.6038/cjg2018L0224.
MacGregor L, Bouchrara S, Tomlinson J, et al. 2012. Integrated analysis of CSEM, seismic and well log data for prospect appraisal:a case study from West Africa. First Break, 30(4):43-48. http://cn.bing.com/academic/profile?id=c53f32e2eff51490b63980181682b594&encoded=0&v=paper_preview&mkt=zh-cn
Mackie R L, Madden T R, Wannamaker P E. 1993. Three-dimensional magnetotelluric modeling using difference equations; Theory and comparisons to integral equation solutions. Geophysics, 58(2):215-226, doi:10.1190/1.1443407.
Mackie R L, Smith J T, Madden T R. 1994. Three-dimensional electromagnetic modeling using finite difference equations:The magnetotelluric example. Radio Science, 29(4):923-935, doi:10.1029/94RS00326.
Mittet R, Morten J P. 2012. Detection and imaging sensitivity of the marine CSEM method. Geophysics, 77(6):E411-E425, doi:10.1190/geo2012-0016.1.
Nabighian M N. 1988. Electromagnetic methods in applied geophysics: Vol 2: Application. Tulsa: Society of Exploration Geophysicists.
Newman G A, Alumbaugh D L. 1995. Frequency-domain modelling of airborne electromagnetic responses using staggered finite differences. Geophysical Prospecting, 43(8):1021-1042, doi:10.1111/j.1365-2478.1995.tb00294.x.
Newman G A, Hoversten G M. 2000. Solution strategies for two-and three-dimensional electromagnetic inverse problems. Inverse Problems, 16(5):1357-1375, doi:10.1088/0266-5611/16/5/314.
Oldenburg D W, Haber E, Shekhtman R. 2013. Three-dimensional inversion of multisource time domain electromagnetic data. Geophysics, 78(1):E47-E57, doi:10.1190/GEO2012-0131.1.
Peng R H, Hu X Y, Han B. 2016.3D inversion of frequency-domain CSEM data based on Gauss-Newton optimization. Chinese Journal of Geophysics (in Chinese), 59(9):3470-3481, doi:10.6038/cjg20160929.
Sandberg S K, Hohmann G W. 1982. Controlled-source audiomagnetotellurics in geothermal exploration. Geophysics, 47(1):100-116, doi:10.1190/1.1441272.
Schaller A M, Streich R, Drijkoningen G G, et al. 2018. A land-based controlled-source electromagnetic method for oil field exploration:An example from the Schoonebeek oil field. Geophysics, 83(2):WB1-WB71, doi:10.1190/geo2017-0022.1.
Schwarzbach C, Haber E. 2013. Finite element based inversion for time-harmonic electromagnetic problems. Geophysical Journal International, 193(2):615-634, doi:1093/gji/ggt006.
Streich R. 2009.3D finite-difference frequency-domain modeling of controlled-source electromagnetic data:Direct solution and optimization for high accuracy. Geophysics, 74(5):F95-F105, doi:10.1190/1.3196241.
Streich R. 2016. Controlled-source electromagnetic approaches for hydrocarbon exploration and monitoring on land. Surveys in Geophysics, 37(1):47-80, doi:10.1007/s10712-015-9336-0.
Tikhonov A N, Arsenin V Y. 1977. Solutions of Ill-Posed Problems. Washington, D.C., USA: W. H. Winston and Sons.
Vilamajó E, Queralt P, Ledo J, et al. 2013. Feasibility of monitoring the Hontomín (Burgos, Spain) CO2 storage site using a deep EM source. Surveys in Geophysics, 34(4):441-461, doi:10.1007/s10712-013-9238-y.
Wang X B, Chen J C, Guo Q S, et al. 2013. Research of the CSAMT exploration mode and experiment for the coalbed methane enrichment region in the north Qinshui basin. Chinese Journal of Geophysics (in Chinese), 56(12):4310-4323, doi:10.6038/cjg20131233.
Weng A H, Liu Y H, Jia D Y, et al. 2012. Three-dimensional controlled source electromagnetic inversion using non-linear conjugate gradients. Chinese Journal of Geophysics (in Chinese), 55(10):3506-3515, doi:10.6038/j.issn.0001-5733.2012.10.034.
Weng A H, Li D J, Li Y B, et al. 2015. Selection of parameter types in Controlled Source Electromagnetic Method. Chinese Journal of Geophysics (in Chinese), 58(2):697-708, doi:10.6038/cjg20150230.
Wirianto M, Mulder W A, Slob E C. 2010. A feasibility study of land CSEM reservoir monitoring in a complex 3-D model. Geophysical Journal International, 181(2):741-755, doi:10.1111/j.1365-246X.2010.04544.x.
Yee K. 1966. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on Antennas and Propagation, 14(3):302-307, doi:10.1109/TAP.1966.1138693.
Zhang J W, Liang X, Ge Q, et al. 2017. Calculation method about hydraulic conductivity of Quaternary aquitard in Jianghan plain. Earth Science (in Chinese), 42(5):761-770, doi:10.3799/dqkx.2017.064.
Zhao N, Wang X B, Qin C, et al. 2016.3D frequency-domain CSEM inversion. Chinese Journal of Geophysics (in Chinese), 59(1):330-341, doi:10.6038/cjg20160128.
底青云, 许诚, 付长民等. 2015.地面电磁探测(SEP)系统对比试验--内蒙曹四夭钼矿.地球物理学报, 58(8):2654-2663, doi:10.6038/cjg20150805. http://www.geophy.cn//CN/abstract/abstract11724.shtml
何继善. 2010.广域电磁测深法研究.中南大学学报(自然科学版), 41(3):1065-1072. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201003042
李展辉, 黄清华, 王彦宾. 2009.三维错格时域伪谱法在频散介质井中雷达模拟中的应用.地球物理学报, 52(7):1915-1922, doi:10.3969/j.issn.0001-5733.2009.07.027. http://www.geophy.cn//CN/abstract/abstract1102.shtml
栾晓东, 底青云, 雷达. 2018.基于牛顿迭代法和遗传算法的CSAMT近场校正.地球物理学报, 61(10):4148-4159, doi:10.6038/cjg2018L0224. http://www.geophy.cn//CN/abstract/abstract14721.shtml
彭荣华, 胡祥云, 韩波. 2016.基于高斯牛顿法的频率域可控源电磁三维反演研究.地球物理学报, 59(9):3470-3481, doi:10.6038/cjg20160929. http://www.geophy.cn//CN/abstract/abstract13071.shtml
王绪本, 陈进超, 郭全仕等. 2013.沁水盆地北部煤层气富集区CSAMT勘探试验研究.地球物理学报, 56(12):4310-4323, doi:10.6038/cjg20131233. http://www.geophy.cn//CN/abstract/abstract9999.shtml
翁爱华, 刘云鹤, 贾定宇等. 2012.地面可控源频率测深三维非线性共轭梯度反演.地球物理学报, 55(10):3506-3515, doi:10.6038/j.issn.0001-5733.2012.10.034. http://www.geophy.cn//CN/abstract/abstract8990.shtml
翁爱华, 李大俊, 李亚彬等. 2015.数据类型对三维地面可控源电磁勘探效果的影响.地球物理学报, 58(2):697-708, doi:10.6038/cjg20150230. http://www.geophy.cn//CN/abstract/abstract11266.shtml
张婧玮, 梁杏, 葛勤等. 2017.江汉平原第四系弱透水层渗透系数求算方法.地球科学, 42(5):761-770, doi:10.3799/dqkx.2017.064.
赵宁, 王绪本, 秦策等. 2016.三维频率域可控源电磁反演研究.地球物理学报, 59(1):330-341, doi:10.6038/cjg20160128. http://www.geophy.cn//CN/abstract/abstract12112.shtml
-