HWM07模式风场在高度60~100 km的精度及建模初步研究

程胡华, 武帅, 宿兴涛, 赵亮. 2020. HWM07模式风场在高度60~100 km的精度及建模初步研究. 地球物理学报, 63(1): 86-100, doi: 10.6038/cjg2019M0647
引用本文: 程胡华, 武帅, 宿兴涛, 赵亮. 2020. HWM07模式风场在高度60~100 km的精度及建模初步研究. 地球物理学报, 63(1): 86-100, doi: 10.6038/cjg2019M0647
CHENG HuHua, WU Shuai, XIU XingTao, ZHAO Liang. 2020. Preliminary study on precision of HWM07 and modeling at an altitude of 60~100 km. Chinese Journal of Geophysics (in Chinese), 63(1): 86-100, doi: 10.6038/cjg2019M0647
Citation: CHENG HuHua, WU Shuai, XIU XingTao, ZHAO Liang. 2020. Preliminary study on precision of HWM07 and modeling at an altitude of 60~100 km. Chinese Journal of Geophysics (in Chinese), 63(1): 86-100, doi: 10.6038/cjg2019M0647

HWM07模式风场在高度60~100 km的精度及建模初步研究

  • 基金项目:

    国家重点研发计划"全球变化与应对"专项(2018YFA0606203), 中国科学院战略性先导科技专项(A类)(XDA17010105)和国家自然科学基金项目(41574178、41305131)资助

详细信息
    作者简介:

    程胡华, 男, 1983年生, 博士, 主要从事空间大气环境、气象保障等研究.E-mail:397849854@qq.com

  • 中图分类号: P351

Preliminary study on precision of HWM07 and modeling at an altitude of 60~100 km

  • HWM07模式是一个应用广泛的国际标准参考大气风场模式,其在航天飞行器的设计阶段具有重要作用.因此,研究该模式风场精度具有重要意义,本文以廊坊中频雷达的风场资料(2014-2016年)为基准,利用偏差、绝对差、相关系数、相对偏差和Lomb-Scargle周期图方法,研究HWM07模式风场在高度60~100 km的精度,最后,对本文建立的60~100 km风场预报模型(UVDerM模型)精度进行分析.结果表明,在高度60~100 km范围内,(1)HWM07模式的纬向风偏差、绝对差、相关系数、相对偏差的平均值分别为14.0039 m·s-1、34.4750 m·s-1、0.1832、-75.4822%,经向风偏差、绝对差、相关系数、相对偏差的平均值分别为-2.0019 m·s-1、25.3689 m·s-1、0.1442、-88.9980%;经向风、纬向风的统计特征均与高度、季节有密切关系;(2)Lomb-Scargle周期图结果表明,中频雷达、HWM07模式风场在同一高度层显著(通过90%显著性检验)含有的波周期及功率谱存在较明显差异,不同高度、不同季节显著含有的波周期和功率谱也存在明显差异;(3)在高度86~92 km,准全日潮汐波、准半日潮汐波分别在冬季、夏季的HWM07模式风场变化特征中为主要作用,而对中频雷达风场变化特征起主要作用的大气波动特征与高度、季节有关;(4)相对于HWM07模式风场,由UVDerM模型得到的纬向风更接近实况资料,但经向风无改进效果.

  • 加载中
  • 图 1 

    在2014—2016年廊坊地区,HWM07模式与中频雷达之间纬向风偏差(a)、不同季节纬向风偏差(b)随高度变化特征

    Figure 1. 

    The altitude variations of zonal wind deviation (a), zonal wind deviation in different seasons (b) between HWM07 model and MF radar in Langfang area during 2014—2016

    图 2 

    在2014—2016年廊坊地区,HWM07模式与中频雷达之间纬向风绝对差(a)、及不同季节纬向风绝对差(b)随高度变化特征

    Figure 2. 

    The altitude variations of zonal wind absolute difference (a), zonal wind absolute difference in different seasons (b) between HWM07 model and MF radar in Langfang area during 2014—2016

    图 3 

    在2014—2016年廊坊地区,HWM07模式与中频雷达之间纬向风相关系数(a)、及不同季节纬向风相关系数(b)随高度变化特征

    Figure 3. 

    The altitude variations of zonal wind correlation coefficient (a), zonal wind correlation coefficient in different seasons (b) between HWM07 model and MF radar in Langfang area during 2014—2016

    图 4 

    在2014—2016年廊坊地区,HWM07模式与中频雷达之间纬向风相对偏差(a)、及不同季节纬向风相对偏差(b)随高度变化特征

    Figure 4. 

    The altitude variations of zonal wind relative deviation (a), zonal wind relative deviation in different seasons (b) between HWM07 model and MF radar in Langfang area during 2014—2016

    图 5 

    在2014—2016年廊坊地区,HWM07模式与中频雷达之间经向风偏差(a)、不同季节经向风偏差(b)随高度变化特征

    Figure 5. 

    The altitude variations of meridional wind deviation (a), meridional wind deviation in different seasons (b) between HWM07 model and MF radar in Langfang area during 2014—2016

    图 6 

    在2014—2016年廊坊地区,HWM07模式与中频雷达之间经向风绝对差(a)、及不同季节纬向风绝对差(b)随高度变化特征

    Figure 6. 

    The altitude variations of meridional wind absolute difference (a), meridional wind absolute difference in different seasons (b) between HWM07 model and MF radar in Langfang area during 2014—2016

    图 7 

    在2014—2016年廊坊地区,HWM07模式与中频雷达之间经向风相关系数(a),及不同季节经向风相关系数(b)随高度变化特征

    Figure 7. 

    The altitude variations of meridional wind correlation coefficient (a), meridional wind correlation coefficient in different seasons (b) between HWM07 model and MF radar in Langfang area during 2014—2016

    图 8 

    在2014—2016年廊坊地区,HWM07模式与中频雷达之间经向风相对偏差(a),及不同季节经向风相对偏差(b)随高度变化特征

    Figure 8. 

    The altitude variations of meridional wind relative deviation (a), meridional wind relative deviation in different seasons (b) between HWM07 model and MF radar in Langfang area during 2014—2016

    图 9 

    在冬季,HWM07模式、中频雷达风场在86 km (a)、88 km (b)、90 km (c)、92 km (d)高度处Lomb-Scargle周期图分析结果(图中虚线为90%显著性检验)

    Figure 9. 

    Lomb-Scargle periodiagram of wind field at 86 km (a), 88 km (b), 90 km (c), 92 km (d) for HWM07 model and MF radar in winter (The dashed line is 90% significant test)

    图 10 

    在夏季,HWM07模式、中频雷达风场在86 km (a)、88 km (b)、90 km (c)、92 km (d)高度处Lomb-Scargle周期图分析结果(图中虚线为90%显著性检验)

    Figure 10. 

    Lomb-Scargle periodiagram of wind field at 86 km (a), 88 km (b), 90 km (c), 92 km (d) for HWM07 model and MF radar in summer (The dashed line is 90% significant test)

    图 11 

    HWM07模式、UVDerM模型与中频雷达资料之间的纬向风偏差(a)、纬向风绝对差(b)随高度变化

    Figure 11. 

    The altitude variations of zonal wind deviation (a), zonal wind absolute difference (b) between HWM07 model, UVDerM model and MF radar

    图 12 

    HWM07模式、UVDerM模型与中频雷达资料之间的经向风偏差(a)、经向风绝对差(b)随高度变化

    Figure 12. 

    The altitude variations of meridional wind deviation (a), meridional wind absolute difference (b) between HWM07 model, UVDerM model and MF radar

    表 1 

    廊坊中频雷达主要参数

    Table 1. 

    Main performance parameters of Langfang MF radar

    探测模式 SAM
    坐标 (39.4°N,116.7°E)
    探测高度 60~100 km
    探测物理量 风场、电子浓度
    峰值功率 ~64 KW
    工作频率 1.99 MHZ
    高度分辨率 2 km
    时间分辨率 4 min
    相干积累个数 32(白天),16(晚上)
    脉冲重复频率 80 Hz(白天),40 Hz(晚上)
    下载: 导出CSV

    表 2 

    在冬季,中频雷达和HWM07模式风场在高度86、88、90、92 km显著含有的大气波动周期特征(表中“—”为未通过90%置信检验)

    Table 2. 

    Characteristics of atmospheric wave period at 86, 88, 90, 92 km for HWM07 model and MF radar in Winter("—" indicate failure to pass the 90% significance test)

    高度/km 准7日行星波周期/d 准2日行星波周期/d 准全日潮汐波周期/h 准半日潮汐波周期/h 准8 h重力波周期/h
    中频雷达 HWM07 中频雷达 HWM07 中频雷达 HWM07 中频雷达 HWM07 中频雷达 HWM07
    86 7.3099 2.0129 23.8095 20.7469 23.9808 11.7786 12.0048
    88 7.3099 2.0129 23.640720.7900 23.9808 11.6959 12.0048
    90 7.3099 2.0129 23.923420.8333 23.9808 11.7096 12.0048
    92 7.3099 2.0129 23.980820.8768 23.9808 11.7925 12.0048 8.0000
    下载: 导出CSV

    表 3 

    在冬季,中频雷达和HWM07模式风场在高度86、88、90、92 km显著含有的大气波动振幅特征(表中“—”为未通过90%置信检验)

    Table 3. 

    Characteristics of atmospheric wave amplitude at 86, 88, 90, 92 km for HWM07 model and MF radar in Winter ("—" indicate failure to pass the 90% significance test)

    高度/km 准7日行星波振幅/(m2·s-1) 准2日行星波振幅/(m2·s-1) 准全日潮汐波振幅/(m2·s-1) 准半日潮汐波振幅/(m2·s-1) 准8 h重力波振幅/(m2·s-1)
    中频雷达 HWM07 中频雷达 HWM07 中频雷达 HWM07 中频雷达 HWM07 中频雷达 HWM07
    86 14.2401 10.1289 27.236813.6776 184.0789 14.7697 97.5658
    88 14.3980 12.9224 22.532913.3829 200.1645 16.4487 84.8487
    90 14.5559 15.2105 19.065810.3974 176.8026 19.6974 107.4474
    92 14.3388 13.0145 14.631611.7711 152.5263 16.6842 129.0395 11.9605
    下载: 导出CSV

    表 4 

    在夏季,中频雷达和HWM07模式风场在高度86、88、90、92 km显著含有的大气波动周期特征(表中“—”为未通过90%显著性检验)

    Table 4. 

    Characteristics of atmospheric wave period at 86, 88, 90, 92 km for HWM07 model and MF radar in Summer ("—" indicate failure to pass the 90% significance test)

    高度/km 准7日行星波周期/d 准2日行星波周期/d 准全日潮汐波周期/h 准半日潮汐波周期/h 准8 h重力波周期/h
    中频雷达 HWM07 中频雷达 HWM07 中频雷达 HWM07 中频雷达 HWM07 中频雷达 HWM07
    86 23.5849 24.0385 11.5741 12.0192 11.6009
    88 23.8663 24.0385 12.300111.7786 12.019211.6009 8.0128
    90 23.8095 24.0385 12.269911.7647 12.0192 8.0128
    92 23.4742 24.0385 12.180311.7371 12.0192
    下载: 导出CSV

    表 5 

    在夏季,中频雷达和HWM07模式风场在高度86、88、90、92 km显著含有的大气波动振幅特征(表中“—”为未通过90%显著性检验)

    Table 5. 

    Characteristics of atmospheric wave amplitude at 86, 88, 90, 92km for HWM07 model and MF radar in Summer ("—" indicate failure to pass the 90% significance test)

    高度/km 准7日行星波振幅/(m2·s-1) 准2日行星波振幅/(m2·s-1) 准全日潮汐波振幅/(m2·s-1) 准半日潮汐波振幅/(m2·s-1) 准8 h重力波振幅/(m2·s-1)
    中频雷达 HWM07 中频雷达 HWM07 中频雷达 HWM07 中频雷达 HWM07 中频雷达 HWM07
    86 9.9671 46.6776 17.7987 182.5000 9.5684
    88 9.6711 59.1711 17.368418.6974 170.88168.7572 8.7572
    90 10.7171 80.7039 11.513210.9737 151.2632 8.7691
    92 18.6184 94.1447 11.144712.0789 140.8224
    下载: 导出CSV

    表 附表 1 

    在2014—2016年廊坊地区,HWM07模式与中频雷达之间纬向风、经向风在高度60~100 km数理统计特征

    Table 附表 1. 

    The mathematical statistics results of zonal wind and meridional wind between HWM07 model and MF radar at the altitude of 60~100 km in Langfang area during 2014—2016

    纬向风 经向风
    平均偏差/(m·s-1) 14.0039 -2.0019
    平均绝对差/(m·s-1) 34.4750 25.3689
    平均相关系数 0.1832 0.1442
    平均相对偏差/% -75.4822 -88.9980
    下载: 导出CSV

    表 附表 2 

    在2014—2016年廊坊地区,不同季节的HWM07模式与中频雷达之间纬向风、经向风在高度60~100 km数理统计特征

    Table 附表 2. 

    In different seasons, The mathematical statistics results of zonal wind and meridional wind between HWM07 model and MF radar at the altitude of 60~100 km in Langfang area during 2014—2016

    纬向风 经向风
    春季 夏季 秋季 冬季 春季 夏季 秋季 冬季
    平均偏差/(m·s-1) 3.8013 -11.3672 23.3852 32.1156 -7.6651 -1.5975 0.4760 0.2769
    平均绝对差/(m·s-1) 26.7072 33.1735 34.8210 41.1391 23.8169 26.6118 25.3837 25.5976
    平均相关系数 0.2104 0.1493 0.1502 0.1678 0.1298 0.1825 0.1564 0.0440
    平均相对偏差/% -73.7510 -52.6977 -88.5409 -82.0749 -91.4887 -85.4679 -87.7988 -92.6432
    下载: 导出CSV
  •  

    Alken P, Maus S, Emmert J, et al. 2008. Improved horizontal wind model HWM07 enables estimation of equatorial ionospheric electric fields from satellite magnetic measurements. Geophysical Research Letters, 35(11):L11105, doi:10.1029/2008GL033580.

     

    Cheng X, Xiao C Y, Hu X. 2018. Research progress on aerodynamic characteristics of hypersonic vehicles under near space atmospheric environment. Aerodynamic Missile Journal (in Chinese), (5):22-28. http://cn.bing.com/academic/profile?id=ae70241f9564b84c12f77e4ff7bfbb86&encoded=0&v=paper_preview&mkt=zh-cn

     

    Ding N, Zhang H J, Zhang X, et al. 2015. A study of the middle time-scale periodic behavior of light curve of BL Lac object OJ287. Acta Physica Sinica (in Chinese), 64(13):139801, doi:10.7498/aps.64.139801.

     

    Drob D P, Emmert J T, Crowley G, et al. 2008. An empirical model of the Earth's horizontal wind fields:HWM07. Journal of Geophysical Research:Space Physics, 113(A12):A12304, doi:10.1029/2008JA013668.

     

    Fan Z Q, Sheng Z, Wan L, et al. 2013. Comprehensive assessment of the accuracy of the data from near space meteorological rocket sounding. Acta Physica Sinica (in Chinese), 62(19):199601, doi:10.7498/aps.62.199601.

     

    Hedin A E, Spencer N W, Killeen T L. 1988. Empirical global model of upper thermosphere winds based on atmosphere and dynamics explorer satellite data. Journal of Geophysical Research:Space Physics, 93(A9):9959-9978. doi: 10.1029/JA093iA09p09959

     

    Hedin A E, Biondi M A, Burnside R G, et al. 1991. Revised global model of thermosphere winds using satellite and ground-based observations. Journal of Geophysical Research:Space Physics, 96(A5):7657-7688. doi: 10.1029/91JA00251

     

    Hedin A E, Fleming E L Mansonet A H, et al. 1996. Empirical wind model for the upper, middle and lower atmosphere. Journal of Atmospheric and Terrestrial Physics, 58(13):1421-1447. doi: 10.1016/0021-9169(95)00122-0

     

    Hu X, Wu X C, Xu Q C, et al. 2011. Observations of the ionosphere effects of the solar eclipse on 22 July 2009. Chinese Journal of Space Science (in Chinese), 31(5):596-601. http://cn.bing.com/academic/profile?id=179285ae5e102ba274ef6845879b1aae&encoded=0&v=paper_preview&mkt=zh-cn

     

    Huang C, Xu J Y, Zhang X X, et al. 2018. Mid-latitude thermospheric wind changes during the St. Patrick's Day storm of 2015 observed by two Fabry-Perot interferometers in China. Advances in Space Research, 61(7):1873-1879. doi: 10.1016/j.asr.2017.10.013

     

    Huang H, Liu Y, Zhao Z L, et al. 2013. Simulation of influence of near space atmosphere on supersonic vehicle. Journal of System Simulation (in Chinese), 25(9):2230-2233. http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201309045

     

    Jiang G Y, Xiong J G, Wan W X, et al. 2005. The 16-day waves in the mesosphere and lower thermosphere over Wuhan (30.6°N, 114.5°E) and Adelaide (35°S, 138°E). Advances in Space Research, 35(11):2005-2010. doi: 10.1016/j.asr.2005.03.011

     

    Jiang G Y, Xu J Y, Shi D B, et al. 2011. Observations of the first meteorological rocket of the Meridian Space Weather Monitoring Project. Chinese Science Bulletin, 56(20):2131-2137. doi: 10.1007/s11434-011-4537-5

     

    Jiang G Y, Xu J Y, Yuan W, et al. 2012. A comparison of mesospheric winds measured by FPI and meteor radar located at 40°N. Science China Technological Sciences, 55(5):1245-1250. doi: 10.1007/s11431-012-4773-1

     

    Li N, Chen J S, Xu Z W, et al. 2014. ST radar in Kunming and its preliminary observation results. Chinese Journal of Radio Science (in Chinese), 29(6):1165-1170. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dbkxxb201406026

     

    Li N, Chen J S, Ding Z H, et al. 2015. Mean winds observed by the Kunming MF radar in 2008-2010. Journal of Atmospheric and Solar-Terrestrial Physics, 122:58-65. doi: 10.1016/j.jastp.2014.10.011

     

    Ling C, Chen Z Y, Chen H B. 2012. Global structure and variation of mesospheric and lower thermospheric zonal wind in 120°E meridian. Acta Physica Sinica (in Chinese), 61(24):249201. http://d.old.wanfangdata.com.cn/Periodical/wlxb201224078

     

    Liu T, Xiao C Y, Hu X, et al. 2018. Application of time series method in forecasting near-space atmospheric wind. Chinese Journal of Space Science (in Chinese), 38(2):211-220. http://d.old.wanfangdata.com.cn/Periodical/kjkxxb201802010

     

    Lomb N R. 1976. Least-squares frequency analysis of unequally spaced data. Astrophysics and Space Science, 39(2):447-462. doi: 10.1007/BF00648343

     

    Ma G L, Hu X, Xu Q C, et al. 2011. Investigation and application of FCA method for Langfang MF radar wind retrievals. Chinese Journal of Space Science (in Chinese), 31(5):618-626. http://cn.bing.com/academic/profile?id=78cd4ba9c3ab5089ccdcbc1f7dcad3f9&encoded=0&v=paper_preview&mkt=zh-cn

     

    Ma Z, Gong Y, Zhang S D, et al. 2018. Study of mean wind variations and gravity wave forcing via a meteor radar chain and comparison with HWM-07 results. Journal of Geophysical Research:Atmospheres, 123(17):9488-9501. doi: 10.1029/2018JD028799

     

    Romanova N Y. 2017. Correlation between the horizontal wind direction and orientation of cross-field anisotropy of small-scale irregularities in the F region of midlatitude ionosphere. Geomagnetism and Aeronomy, 57(4):426-433. doi: 10.1134/S0016793217040156

     

    Scargle J D. 1982. Studies in astronomical time series analysis. Ⅱ-Statistical aspects of spectral analysis of unevenly spaced data. Astrophysical Journal, 263(2):835-853. http://d.old.wanfangdata.com.cn/NSTLQK/10.1086-160554/

     

    Sheng Z, Li J W, Jiang Y, et al. 2017. Characteristics of stratospheric winds over Jiuquan (41. 1°N, 100. 2°E) using rocketsonde data in 1967-2004. Journal of Atmospheric and Oceanic Technology, 34(3):657-667. doi: 10.1175/JTECH-D-16-0014.1

     

    Sun L, Lian P, Chang X F, et al. 2016. Near space atmosphere modeling and its effect on the aircraft. Command Control & Simulation (in Chinese), 38(5):107-111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qbzhkzxtyfzjs201605023

     

    Tian Y F, Lü D R. 2016. Preliminary analysis of Beijing MST radar observation results in the mesosphere-lower thermosphere. Chinese Journal of Geophysics (in Chinese), 59(2):440-452, doi:10.6038/cjg20160204.

     

    Yi F. 2001. Short-term variability and temporary structures of tides and mean wind in the polar summer mesosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 63(8):749-757. doi: 10.1016/S1364-6826(01)00005-0

     

    Zhang H, Ai Y, Zhang Y G, et al. 2013. First observation of thermospheric neutral wind at Chinese Yellow River Station in Ny-Alesund, Svalbard. Chinese Science Bulletin, 58(11):1310-1315. doi: 10.1007/s11434-012-5626-9

     

    Zhao H S, Wu Z S, Xu Z W, et al. 2014. Long-term ionospheric characteristics over Urumchi. Chinese Journal of Space Science (in Chinese), 34(4):398-405. http://d.old.wanfangdata.com.cn/Periodical/kjkxxb201404004

     

    程旋, 肖存英, 胡雄. 2018.临近空间大气环境对高超声速飞行器气动特性的影响研究进展.飞航导弹, (5):22-28. http://d.old.wanfangdata.com.cn/Periodical/fhdd201805005

     

    丁楠, 张皓晶, 张雄等. 2015.蝎虎天体OJ287中等时标光变的周期特性研究.物理学报, 64(13):139801, doi:10.7498/aps.64.139801.

     

    范志强, 盛峥, 万黎等. 2013.临近空间气象火箭探测资料精度的综合评估.物理学报, 62(19):199601, doi:10.7498/aps.62.199601.

     

    胡雄, 吴小成, 徐轻尘等. 2011. 2009年7月22日日全食电离层效应观测.空间科学学报, 31(5):596-601. http://www.cqvip.com/QK/95638X/201105/39154184.html

     

    黄华, 刘毅, 赵增亮等. 2013.临近空间环境对高速飞行器影响分析与仿真研究.系统仿真学报, 25(9):2230-2233. http://d.old.wanfangdata.com.cn/Periodical/xtfzxb201309045

     

    姜国英, 徐寄遥, 史东波等. 2011.子午工程首枚气象火箭大气探测结果分析.科学通报, 56(19):1568-1574. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201119010

     

    李娜, 陈金松, 许正文等. 2014.昆明平流层-对流层雷达系统及初步探测结果.电波科学学报, 29(6):1165-1170. http://d.old.wanfangdata.com.cn/Periodical/dbkxxb201406026

     

    凌超, 陈泽宇, 陈洪滨. 2012.东经120°E中间层和低热层纬向风结构及变化特征.物理学报, 61(24):249201. doi: 10.7498/aps.61.249201

     

    刘涛, 肖存英, 胡雄等. 2018.时间序列法在临近空间大气风场预报中的应用.空间科学学报, 38(2):211-220. http://d.old.wanfangdata.com.cn/Periodical/kjkxxb201802010

     

    马广林, 胡雄, 徐轻尘等. 2011.廊坊中频雷达风场FCA算法的研究及应用.空间科学学报, 31(5):618-626. http://d.wanfangdata.com.cn/Periodical_kjkxxb201105008.aspx

     

    孙磊, 廉璞, 常晓飞等. 2016.临近空间大气环境建模及其对飞行器影响.指挥控制与仿真, 38(5):107-111. doi: 10.3969/j.issn.1673-3819.2016.05.023

     

    田玉芳, 吕达仁. 2016.北京MST雷达探测中间层-低热层观测结果初步分析.地球物理学报, 59(2):440-452, doi:10.6038/cjg20160204.

     

    赵海生, 吴振森, 许正文等. 2014.乌鲁木齐地区电离层环境长期变化特性研究.空间科学学报, 34(4):398-405. http://d.old.wanfangdata.com.cn/Periodical/kjkxxb201404004

  • 加载中

(12)

(7)

计量
  • 文章访问数:  370
  • PDF下载数:  242
  • 施引文献:  0
出版历程
收稿日期:  2018-11-16
修回日期:  2019-06-17
上线日期:  2020-01-05

目录