修正辛格式有限元法的地震波场模拟

苏波, 李怀良, 刘少林, 杨顶辉. 2019. 修正辛格式有限元法的地震波场模拟. 地球物理学报, 62(4): 1440-1452, doi: 10.6038/cjg2019M0538
引用本文: 苏波, 李怀良, 刘少林, 杨顶辉. 2019. 修正辛格式有限元法的地震波场模拟. 地球物理学报, 62(4): 1440-1452, doi: 10.6038/cjg2019M0538
SU Bo, LI HuaiLiang, LIU ShaoLin, YANG DingHui. 2019. Modified symplectic scheme with finite element method for seismic wavefield modeling. Chinese Journal of Geophysics (in Chinese), 62(4): 1440-1452, doi: 10.6038/cjg2019M0538
Citation: SU Bo, LI HuaiLiang, LIU ShaoLin, YANG DingHui. 2019. Modified symplectic scheme with finite element method for seismic wavefield modeling. Chinese Journal of Geophysics (in Chinese), 62(4): 1440-1452, doi: 10.6038/cjg2019M0538

修正辛格式有限元法的地震波场模拟

  • 基金项目:

    国家自然科学基金(41604034,41774118),国家重点研发计划项目课题(2017YFC150031)资助

详细信息
    作者简介:

    苏波, 男, 1977年生, 西南科技大学计算机科学与技术学院教师, 主要从事地震波正反演的研究工作.E-mail:bosu@foxmail.com

    刘少林, 男, 1988年生, 新加坡南洋理工大学、清华大学数学系博士后, 从事地震波传播与成像研究.E-mail:shaolinliu88@gamil.com

  • 中图分类号: P315

Modified symplectic scheme with finite element method for seismic wavefield modeling

  • 三角网格有限元法具有网格剖分的灵活性,能有效模拟地震波在复杂介质中的传播.但传统有限元法用于地震波场模拟时计算效率较低,消耗较大计算资源.本文采用改进的核矩阵存储(IKMS)策略以提高有限元法的计算效率,该方法不用组合总体刚度矩阵,且相比于常规有限元法节省成倍的内存.对于时间离散,将有限元离散后的地震波运动方程变换至Hamilton体系,在显式二阶辛Runge-Kutta-Nystr m(RKN)格式的基础之上加入额外空间离散算子构造修正辛差分格式,通过Taylor展开式得到具有四阶时间精度时间格式,且辛系数全为正数.本文从理论上分析了时空改进方法相比传统辛-有限元方法在频散压制、稳定性提升等方面的优势.数值算例进一步证实本方法具有内存消耗少、稳定性强和数值频散弱等优点.

  • 加载中
  • 图 1 

    等腰直角三角形单元网格

    Figure 1. 

    FEM element mesh constructed by isosceles right triangles

    图 2 

    三种辛格式的数值频散曲线

    Figure 2. 

    Numerical dispersion curves of three symplectic schemes

    图 3 

    二维均匀介质模型

    Figure 3. 

    2D homogeneous model for benchmark

    图 4 

    R1 (a)和R2 (b)处位移垂直分量合成波形与解析解波形对比; (c)和(d)分别对应于(a)和(b)图中的波形误差

    Figure 4. 

    Comparison of synthetic waveforms obtained by analytic method (black curve), FDM (red curve) and symplectic FEM (green curve). (a) and (b) show vertical component of synthetic waveform at R1 and R2, respectively. (c) and (d) show waveform misfits in (a) and (b), respectively

    图 5 

    R3处合成波形的水平分量(a)与垂直分量(b)和解析解波形对比

    Figure 5. 

    The synthetic waveforms of horizontal (a) and vertical (b) components at R3. Black curve is generated by analytic solution; red curve by second-order symplectic PRK; green curve by modified sympectic scheme; blue curve by third-order symplectic scheme

    图 6 

    Marmousi模型的P波速度结构

    Figure 6. 

    P-wave velocity structure of Marmousi model

    图 7 

    二阶PRK辛-FEM(a)与修正辛-FEM(b)得到的地表合成记录; (c)与(d)分别为二阶PRK辛-FEM与修正辛-FEM地表合成记录与参考解的残差

    Figure 7. 

    Synthetic seismograms generated by the second-order PRK symplectic FEM (a) and modified symplectic FEM (b); (c) difference between synthetic record in (a) and the reference solution; (d) difference between synthetic record in (b) and the reference solution

    图 附图 1 

    自由地表网格点示意图

    Figure 附图 1. 

    Schematic of grid points around free surface in FDM

    表 1 

    三种辛格式的| Δt2λi |max

    Table 1. 

    The values of | Δt2λi |max for three symplectic schemes

    方法 二阶PRK辛格式 修正辛格式 三阶辛格式
    t2λi|max 4 12 7.107
    下载: 导出CSV

    表 2 

    三种辛格式的稳定性范围b

    Table 2. 

    The stability parameter b for three temporal schemes

    有限元插值 二阶PRK辛格式 修正辛格式 三阶辛格式
    一阶插值 0.7071 1.2247 0.9425
    二阶插值 0.5869 1.0165 0.7823
    三阶插值 0.4463 0.7731 0.5950
    下载: 导出CSV

    表 3 

    修正辛-有限元和有限差分法计算效率和总体误差对比

    Table 3. 

    Computational efficiency and accuracy of the modified symplectic FEM and FDM

    参数 方法
    FDM 修正辛-FEM
    运行内存 100% 270.06%
    计算时间 100% 109.80%
    R1误差总量 28.12 4.82
    R2误差总量 10.83 6.31
    下载: 导出CSV

    表 4 

    1至3阶插值时不同存储策略内存消耗对比

    Table 4. 

    Memory requirements of two storage schemes with three interpolation orders

    刚度矩阵
    处理方法
    一阶插值 二阶插值 三阶插值
    刚度矩阵存储(MB) 实际总内存(MB) 刚度矩阵存储(MB) 实际总内存(MB) 刚度矩阵存储(MB) 实际总内存(MB)
    CSR存储 12.3963 277.6211 20.1325 104.5234 32.6123 135.3672
    IKMS 0.6868 66.0762 0.6872 34.5352 0.6882 35.3086
    下载: 导出CSV

    表 5 

    三种时间离散方法的计算效率和总体误差对比

    Table 5. 

    Computational efficiency and total error of three temporal methods

    参数 方法
    二阶PRK辛格式 修正辛格式 三阶辛格式
    运行内存 100% 100.19% 100.01%
    计算时间 100% 122.45% 125.05%
    X方向误差总量 13.62 6.33 6.78
    Z方向误差总量 15.28 10.22 10.26
    下载: 导出CSV
  •  

    Alford R M, Kelly K R, Boore D M. 1974. Accuracy of finite-difference modeling of the acoustic wave equation. Geophysics, 39(6):834-842. doi: 10.1190/1.1440470

     

    Amaru M L. 2007. Global travel time tomography with 3-D reference models[Ph.D.thesis]. Netherlands: Utrecht University.

     

    Berenger J P. 1994. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2):185-200. doi: 10.1006/jcph.1994.1159

     

    Butcher J C. 1996. A history of Runge-Kutta methods. Applied Numerical Mathematics, 20(3):247-260. doi: 10.1016/0168-9274(95)00108-5

     

    Cai W J, Zhang H, Wang Y S. 2017. Dissipation-preserving spectral element method for damped seismic wave equations. Journal of Computational Physics, 350:260-279. doi: 10.1016/j.jcp.2017.08.048

     

    Chen J B. 2007. High-order time discretizations in seismic modeling. Geophysics, 72(5):SM115-SM122. doi: 10.1190/1.2750424

     

    Cheng B, Zhao D P, Zhang G W. 2011. Seismic tomography and anisotropy in the source area of the 2008 Iwate-Miyagi earthquake (M7.2).Physics of the Earth and Planetary Interiors, 184(3-4):172-185. doi: 10.1016/j.pepi.2010.11.006

     

    Cohen G C. 2002. Higher-Order Numerical Methods for Transient Wave Equations. Berlin: Springer-Verlag.

     

    Dablain M A. 1986. The application of high-order differencing to the scalar wave equation. Geophysics, 51(1):54-66. doi: 10.1190/1.1442040

     

    De Hoop A T. 1960. A modification of Cagniard's method for solving seismic pulse problems. Applied Scientific Research, Section B, 8(1):349-356. doi: 10.1007/BF02920068

     

    De Basabe J D, Sen M K. 2007. Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations. Geophysics, 72(6):T81-T95. doi: 10.1190/1.2785046

     

    De Basabe J D. 2009. High-order finite element methods for seismic wave propagation[Ph.D.thesis]. Texas: University of Texas at Austin.

     

    Feng K, Qin M Z. 2010. Symplectic Geometric Algorithms for Hamiltonian Systems. Berlin: Springer.

     

    Fornberg B. 1988. The pseudospectral method; Accurate repre sentation of interfaces in elastic wave calculations. Geophysics, 53(5):625-637. doi: 10.1190/1.1442497

     

    Fornberg B. 1990. High-order finite differences and the pseudospectral method on staggered grids. SIAM Journal on Numerical Analysis, 27(4):904-918. doi: 10.1137/0727052

     

    Gao Y J, Song H J, Zhang J H, et al. 2015. Comparison of artificial absorbing boundaries for acoustic wave equation modelling. Exploration Geophysics, 48(1):76-93.

     

    Gao Y J, Zhang J H, Yao Z X. 2016. Third-order symplectic integration method with inverse time dispersion transform for long-term simulation. Journal of Computational Physics, 314:436-449. doi: 10.1016/j.jcp.2016.03.031

     

    Kane C, Marsden J E, Ortiz M, et al. 2015. Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. International Journal for Numerical Methods in Engineering, 49(10):1295-1325.

     

    Komatitsch D, Vilotte J P. 1998. The spectral element method:An efficient tool to simulate the seismic response of 2D and 3D geological structures. Bulletin of the Seismological Society of America, 88(2):368-392.

     

    Komatitsch D, Ritsema J, Tromp J. 2002. The spectral-element method, Beowulf computing, and global seismology. Science, 298(5599):1737-1742. doi: 10.1126/science.1076024

     

    Lan H Q, Zhang Z J. 2011. Comparative study of the free-surface boundary condition in two-dimensional finite-difference elastic wave field simulation. Journal of Geophysics and Engineering, 8(2):275-286. doi: 10.1088/1742-2132/8/2/012

     

    Lax P D, Wendroff B. 1964. Difference schemes for hyperbolic equations with high order of accuracy. Communications on Pure and Applied Mathematics, 17(3):381-398. doi: 10.1002/(ISSN)1097-0312

     

    Li J S, Yang D H, Liu F Q. 2013. An efficient reverse time migration method using local nearly analytic discrete operator. Geophysics, 78(1):S15-S23. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229861447/

     

    Li X F, Li Y Q, Zhang M G, et al. 2011. Scalar seismic-wave equation modeling by a multisymplectic discrete singular convolution differentiator method. Bulletin of the Seismological Society of America, 101(4):1710-1718. doi: 10.1785/0120100266

     

    Li X F, Wang W S, Lu M W, et al. 2012. Structure-preserving modelling of elastic waves:A symplectic discrete singular convolution differentiator method. Geophysical Journal International, 188(3):1382-1392. doi: 10.1111/gji.2012.188.issue-3

     

    Liu S L, Li X F, Liu Y S, et al. 2014. Dispersion analysis of triangle-based finite element method for acoustic and elastic wave simulations. Chinese Journal of Geophysics (in Chinese), 57(8):2620-2630, doi:10.6038/cjg20140821.

     

    Liu S L, Li X F, Wang W S, et al. 2014. A mixed-grid finite element method with PML absorbing boundary conditions for seismic wave modelling. Journal of Geophysics and Engineering, 11(5):055009. doi: 10.1088/1742-2132/11/5/055009

     

    Liu S L, Li X F, Wang W S, et al. 2015. A symplectic RKN scheme for solving elastic wave equations. Chinese Journal of Geophysics (in Chinese), 58(4):1355-1366, doi:10.6038/cjg20150422.

     

    Liu S L, Li X F, Wang W S, et al. 2015. A modified symplectic scheme for seismic wave modeling. Journal of Applied Geophysics, 116:110-120. doi: 10.1016/j.jappgeo.2015.03.007

     

    Liu S L, Yang D H, Dong X P, et al. 2017. Element-by-element parallel spectral-element methods for 3-D teleseismic wave modeling. Solid Earth, 8(5):969-986. doi: 10.5194/se-8-969-2017

     

    Liu S L, Yang D H, Lang C, et al. 2017a. Modified symplectic schemes with nearly-analytic discrete operators for acoustic wave simulations. Computer Physics Communications, 213:52-63. doi: 10.1016/j.cpc.2016.12.002

     

    Liu S L, Yang D H, Ma J. 2017b. A modified symplectic PRK scheme for seismic wave modeling. Computers & Geosciences, 99:28-36.

     

    Liu Y K, Chang X. 1998. The implicit multigrid method for the secondary hydrocarbon migration drived by water. Acta Geophysics Sinica (in Chinese), 41(3):342-348.

     

    Liu Y S, Teng J W, Xu T, et al. 2014. Numerical modeling of seismic wavefield with the SEM based on Triangles. Progress in Geophysics (in Chinese), 29(4):1715-1726, doi:10.6038/pg20140430.

     

    Liu Y S. 2015. Seismic wavefield modeling using the spectral element method and migration/inversion[Ph.D.thesis]. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences.

     

    Marfurt K J. 1984. Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations. Geophysics, 49(5):533-549. doi: 10.1190/1.1441689

     

    Mazzieri I, Rapetti F. 2012. Dispersion analysis of triangle-based spectral element methods for elastic wave propagation. Numerical Algorithms, 60(4):631-650. doi: 10.1007/s11075-012-9592-8

     

    McLachlan R I, Atela P. 1992. The accuracy of symplectic integrators. Nonlinearity, 5(2):541-562. doi: 10.1088/0951-7715/5/2/011

     

    Meng W J, Fu L Y. 2017. Seismic wavefield simulation by a modified finite element method with a perfectly matched layer absorbing boundary. Journal of Geophysics and Engineering, 14(4):852-864. doi: 10.1088/1742-2140/aa6b31

     

    Moczo P, Kristek J, Halada L. 2000.3D fourth-order staggered-grid finite-difference schemes:Stability and grid dispersion. Bulletin of the Seismological Society of America, 90(3):587-603. doi: 10.1785/0119990119

     

    Mullen R, Belytschko T. 1982. Dispersion analysis of finite element semidiscretizations of the two-dimensional wave equation. International Journal for Numerical Methods in Engineering, 18(1):11-29. doi: 10.1002/(ISSN)1097-0207

     

    Nilsson S, Petersson N A, Sjögreen B, et al. 2007. Stable difference approximations for the elastic wave equation in second order formulation. SIAM Journal on Numerical Analysis, 45(5):1902-1936. doi: 10.1137/060663520

     

    Padovani E, Priolo E, Seriani G. 1994. Low and high order finite element method:Experience in seismic modeling. Journal of Computational Acoustics, 2(4):371-422. doi: 10.1142/S0218396X94000233

     

    Pratt R G, Shin C, Hick G J. 1998. Gauss-newton and full newton methods in frequency-space seismic waveform inversion. Geophysical Journal International, 133(2):341-362. doi: 10.1046/j.1365-246X.1998.00498.x

     

    Saad Y. 2001. Parallel Iterative Methods for Sparse Linear Systems. Studies in Computational Mathematics, 8:423-440. doi: 10.1016/S1570-579X(01)80025-2

     

    Shragge J. 2014. Reverse time migration from topography. Geophysics, 79(4):S141-S152. doi: 10.1190/geo2013-0405.1

     

    Smith W D. 1975. The application of finite element analysis to body wave propagation problems. Geophysical Journal International, 42(2):747-768.

     

    Sonneveld P. 1989. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 10(1):36-52. doi: 10.1137/0910004

     

    Sun W J, Fu L Y. 2013. Two effective approaches to reduce data storage in reverse time migration. Computers & Geosciences, 56:69-75.

     

    Sun W J, Zhou B Z, Fu L Y. 2015. A staggered-grid convolutional differentiator for elastic wave modelling. Journal of Computational Physics, 301:59-76. doi: 10.1016/j.jcp.2015.08.017

     

    Tape C, Liu Q Y, Maggi A, et al. 2009. Adjoint tomography of the southern California crust. Science, 325(5943):988-992. doi: 10.1126/science.1175298

     

    Tape C, Liu Q Y, Maggi A, et al. 2010. Seismic tomography of the southern California crust based on spectral-element and adjoint methods. Geophysical Journal of the Royal Astronomical Society, 180(1):433-462. doi: 10.1111/gji.2010.180.issue-1

     

    Tarantola A. 1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49(8):1259-1266. doi: 10.1190/1.1441754

     

    Tong P, Yang D H, Hua B L, et al. 2013. A high-order stereo-modeling method for solving wave equations. Bulletin of the Seismological Society of America, 103(2A):811-833. doi: 10.1785/0120120144

     

    Virieux J. 1984. SH-wave propagation in heterogeneous media; Velocity-stress finite-difference method. Geophysics, 49(11):1933-1942. doi: 10.1190/1.1441605

     

    Virieux J. 1986. P-SV wave propagation in heterogeneous media:Velocity-stress finite-difference method. Geophysics, 51(4):889-901. doi: 10.1190/1.1442147

     

    Virieux J, Operto S. 2009. An overview of full-waveform inversion in exploration geophysics. Geophysics, 74(6):WCC1-WCC26. doi: 10.1190/1.3238367

     

    Wang Y B, Takenaka H, Furumura T. 2010. Modelling seismic wave propagation in a two-dimensional cylindrical whole-earth model using the pseudospectral method. Geophysical Journal of the Royal Astronomical Society, 145(3):689-708.

     

    Wang Y F, Liang W Q, Nashed Z, et al. 2016. Determination of finite difference coefficients for the acoustic wave equation using regularized least-squares inversion. Journal of Inverse and Ill-posed Problems, 24(6):743-760.

     

    Wang Z W, Zhao D P, Liu X, et al. 2017. P and S wave attenuation tomography of the Japan subduction zone. Geochemistry, Geophysics, Geosystems, 18(4):1688-1710. doi: 10.1002/2017GC006800

     

    Wu S R. 2006. Lumped mass matrix in explicit finite element method for transient dynamics of elasticity. Computer Methods in Applied Mechanics and Engineering, 195(44-47):5983-5994. doi: 10.1016/j.cma.2005.10.008

     

    Yan Z Z, Zhang H, Yang C C, et al. 2009. Spectral element analysis on the characteristics of seismic wave propagation triggered by Wenchuan MS8.0 earthquake. Science in China Series D:Earth Sciences, 52(6):764-773. doi: 10.1007/s11430-009-0078-z

     

    Yang D H. 2002. Finite element method of the elastic wave equation and wavefield simulation in two-phase anisotropic media. Chinese Journal of Geophysics (in Chinese), 45(4):575-583.

     

    Yang D H, Teng J W, Zhang Z J, et al. 2003. A nearly analytic discrete method for acoustic and elastic wave equations in anisotropic media. Bulletin of the Seismological Society of America, 93(2):882-890. doi: 10.1785/0120020125

     

    Yang D H, Peng J M, Lu M, et al. 2006. Optimal nearly analytic discrete approximation to the scalar wave equation. Bulletin of the Seismological Society of America, 96(3):1114-1130. doi: 10.1785/0120050080

     

    Yang D H, Song G J, Lu M. 2007. Optimally accurate nearly analytic discrete scheme for wave-field simulation in 3d anisotropic media. Bulletin of the Seismological Society of America, 97(5):1557-1569. doi: 10.1785/0120060209

     

    Yang Y P, Shen H N. 2010. The rationality and limitation on the substitution of the concentrated mass matrix for the consistent mass matrix. Journal of Qinghai University (Natural Science)(in Chinese), 28(1):35-39.

     

    Zhang J H, Yao Z X. 2013. Optimized explicit finite-difference schemes for spatial derivatives using maximum norm. Journal of Computational Physics, 250:511-526. doi: 10.1016/j.jcp.2013.04.029

     

    Zhao D P, Yamamoto Y, Yanada T. 2013. Global mantle heterogeneity and its influence on teleseismic regional tomography. Gondwana Research, 23(2):595-616. doi: 10.1016/j.gr.2012.08.004

     

    Zhebel E, Minisini S, Kononov A, et al. 2014. A comparison of continuous mass-lumped finite elements with finite differences for 3-D wave propagation. Geophysical Prospecting, 62(5):1111-1125. doi: 10.1111/gpr.2014.62.issue-5

     

    刘少林, 李小凡, 刘有山等. 2014.三角网格有限元法声波与弹性波模拟频散分析.地球物理学报, 57(8):2620-2630, doi:10.6038/cjg20140821. http://www.geophy.cn//CN/abstract/abstract10578.shtml

     

    刘少林, 李小凡, 汪文帅等. 2015.求解弹性波方程的辛RKN格式.地球物理学报, 58(4):1355-1366, doi:10.6038/cjg20150422. http://www.geophy.cn//CN/abstract/abstract11397.shtml

     

    刘伊克, 常旭, 1998.盆地模拟水动力油气二次运移隐式多重网格法.地球物理学报, 41(3):342-348. doi: 10.3321/j.issn:0001-5733.1998.03.007 http://www.geophy.cn//CN/abstract/abstract3900.shtml

     

    刘有山, 滕吉文, 徐涛等. 2014.三角网格谱元法地震波场数值模拟.地球物理学进展, 29(4):1715-1726, doi:10.6038/pg20140430.

     

    刘有山. 2015.谱元法地震波场数值模拟与偏移成像[博士论文].北京: 中科院地质与地球物理研究所.

     

    严珍珍, 张怀, 杨长春等. 2009.汶川大地震地震波传播的谱元法数值模拟研究.中国科学:地球科学, 39(4):393-402. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200904002.htm

     

    杨顶辉. 2002.双相各向异性介质中弹性波方程的有限元解法及波场模拟.地球物理学报, 45(4):575-583. doi: 10.3321/j.issn:0001-5733.2002.04.015 http://www.geophy.cn//CN/abstract/abstract3524.shtml

     

    杨亚平, 沈海宁. 2010.集中质量矩阵替代一致质量矩阵的合理性与局限性.青海大学学报(自然科学版), 28(1):35-39. doi: 10.3969/j.issn.1006-8996.2010.01.009

  • 加载中

(8)

(5)

计量
  • 文章访问数:  782
  • PDF下载数:  391
  • 施引文献:  0
出版历程
收稿日期:  2018-09-03
修回日期:  2018-12-02
上线日期:  2019-04-05

目录