阿尔芬波动特征对卫星磁力仪零位标定的影响

潘宗浩, 王国强, 孟立飞, 易忠, 张铁龙. 2019. 阿尔芬波动特征对卫星磁力仪零位标定的影响. 地球物理学报, 62(4): 1193-1198, doi: 10.6038/cjg2019M0513
引用本文: 潘宗浩, 王国强, 孟立飞, 易忠, 张铁龙. 2019. 阿尔芬波动特征对卫星磁力仪零位标定的影响. 地球物理学报, 62(4): 1193-1198, doi: 10.6038/cjg2019M0513
PAN ZongHao, WANG GuoQiang, MENG LiFei, YI Zhong, ZHANG TieLong. 2019. Influence of Alfvénic characteristics on calibration of satellite magnetometer. Chinese Journal of Geophysics (in Chinese), 62(4): 1193-1198, doi: 10.6038/cjg2019M0513
Citation: PAN ZongHao, WANG GuoQiang, MENG LiFei, YI Zhong, ZHANG TieLong. 2019. Influence of Alfvénic characteristics on calibration of satellite magnetometer. Chinese Journal of Geophysics (in Chinese), 62(4): 1193-1198, doi: 10.6038/cjg2019M0513

阿尔芬波动特征对卫星磁力仪零位标定的影响

  • 基金项目:

    国家自然科学基金(41774171,41804157),深圳启动基金,深圳知识创新计划基础研究(JCYJ20170811154933612),高等学校学科创新引智计划(B18017)联合资助

详细信息
    作者简介:

    潘宗浩, 男, 2012年中国科学技术大学地空学院博士毕业, 主要从事航天器空间磁场探测及空间天气环境预报模式研究等相关工作.E-mail:zhpan@ustc.edu.cn

    通讯作者: 王国强, 助理教授, 主要研究方向为磁层物理.E-mail:wanggq@hit.edu.cn
  • 中图分类号: P353

Influence of Alfvénic characteristics on calibration of satellite magnetometer

More Information
  • 磁通门磁力仪的零位偏移量在卫星轨道上会因诸多因素而发生改变.为此,基于剪切阿尔芬波动不改变总磁场强度这一特征的Davis-Smith方法被提出用于计算磁力仪的零位补偿.实际上,行星际空间中没有纯粹的阿尔芬波动.本文采用数值模拟分析了存在小的压缩波动情况下,阿尔芬波动的幅度、周期和相位以及数据窗口时间长度等对Davis-Smith方法计算零位补偿的影响.我们发现,只有当阿尔芬波动的周期与压缩波动周期相同时,阿尔芬波动的性质会对零位补偿的计算产生不可忽视的误差.阿尔芬波动的幅度越大,零位补偿的误差越小.磁场各分量零位补偿的误差大小还会受到阿尔芬波动初始相位的影响.此外,数据窗口时间长度越长,则零位补偿误差趋于减小至真实值.

  • 加载中
  • 图 1 

    基于Davis-Smith方法的磁力仪零位补偿的误差与阿尔芬波动周期的关系, ΔO1、ΔO2和ΔO3分别代表BXBYBZ分量的零位补偿

    Figure 1. 

    The relation between the magnetometer offset and the period of the Alfvén wave based on Davis-Smith method. ΔO1, ΔO2 and ΔO3 indicate the magnetometer offset values of BX, BY and BZ, respectively

    图 3 

    BZ分量的零位补偿相对值R随阿尔芬波动幅度的变化关系,其中

    Figure 3. 

    The relation between R and the amplitude of the Alfvén wave, where

    图 4 

    磁力仪零位补偿随阿尔芬波动初始相位的变化关系

    Figure 4. 

    The relation between the magnetometer offset and the initial phase of the Alfvén wave

    图 5 

    BZ分量的零位补偿相对值R随阿尔芬波动初始相位的变化关系

    Figure 5. 

    The relation between R and the initial phase of the Alfvén wave

    图 6 

    磁力仪零位补偿随数据窗口时间长度的变化关系

    Figure 6. 

    The relation between the magnetometer offset and the time length of the data window

    图 2 

    磁力仪零位补偿随阿尔芬波动幅度的变化关系

    Figure 2. 

    The relation between the magnetometer offset and the amplitude of the Alfvén wave

  •  

    Acuña M H. 2002. Space-based magnetometers. Review of Scientific Instruments, 73(11):3717-3736. doi: 10.1063/1.1510570

     

    Balogh A. 2010. Planetary magnetic field measurements:Missions and instrumentation. Space Science Reviews, 152(1-4):23-97. doi: 10.1007/s11214-010-9643-1

     

    Belcher J W. 1973. A variation of the Davis-smith method for in-flight determination of spacecraft magnetic fields. Journal of Geophysical Research, 78(28):6480-6490. doi: 10.1029/JA078i028p06480

     

    Cao J B, Wei X H, Duan A Y, et al. 2013. Slow magnetosonic waves detected in reconnection diffusion region in the Earth's magnetotail. Journal of Geophysical Research:Space Physics, 118(4):1659-1666, doi:10.1002/jgra.50246.

     

    Carr C, Brown P, Zhang T L, et al. 2005. The double star magnetic field investigation:Instrument design, performance and highlights of the first year's observations. Annales Geophysicae, 23(8):2713-2732, doi:10.5194/angeo-23-2713-2005.

     

    Davis L Jr, Smith E J, Belcher J. 1968. The in-flight determination of spacecraft magnetic field zeros. EOS, Transactions, American Geophysical Union, 49:257. http://cn.bing.com/academic/profile?id=fc301c553980a52885b91401cb8c5148&encoded=0&v=paper_preview&mkt=zh-cn

     

    Ge Y S, Russell C T, Khurana K K. 2010. Reconnection sites in Jupiter's magnetotail and relation to Jovian auroras. Planetary and Space Science, 58(11):1455-1469, doi:10.1016/J.Pss.2010.06.013.

     

    Hedgecock P C. 1975. A correlation technique for magnetometer zero level determination. Space Science Instrumentation, 1:83-90. http://cn.bing.com/academic/profile?id=1bd16044ce3dddc4407e2ae5064a3eb6&encoded=0&v=paper_preview&mkt=zh-cn

     

    Leinweber H K, Russell C T, Torkar K, et al. 2008. An advanced approach to finding magnetometer zero levels in the interplanetary magnetic field. Measurement Science and Technology, 19(5):055104, doi:10.1088/0957-0233/19/5/055104.

     

    Liu J K, Ge Y S, Zhang T L, et al. 2017. The statistical analysis on magnetic holes inside the Earth magnetotail plasma sheet. Chinese Journal of Geophysics (in Chinese), 60(3):873-878, doi:10.6038/cjg20170301.

     

    Meng L F, Pan Z H, Yi Z, et al. 2018. Error properties of the fluxgate magnetometer offset based on Davis-Smith method. Chinese Journal of Geophysics (in Chinese), 61(3):3545-3551, doi:10.6038/cjg2018L0264.

     

    Ness N F, Behannon K W, Lepping R P, et al. 1971. Use of two magnetometers for magnetic field measurements on a spacecraft. Journal of Geophysical Research, 76(16):3564-3573, doi:10.1029/JA076i016p03564.

     

    Pope S A, Zhang T L, Balikhin M A, et al. 2011. Exploring planetary magnetic environments using magnetically unclean spacecraft:A systems approach to VEX MAG data analysis. Annales Geophysicae, 29(4):639-647, doi:10.5194/angeo-29-639-2011.

     

    Pudney M A, Carr1 C M, Schwartz1 S J, et al. 2012. Automatic parameterization for magnetometer zero offset determination. Geoscientific Instrumentation, Methods and Data Systems, 1(2):103-109, doi:10.5194/gi-1-103-2012.

     

    Qiu N, Chen Y H, Wang W B, et al. 2015. Statistical analysis of the ionosphere response to the CIR and CME in Mid-latitude regions. Chinese Journal of Geophysics (in Chinese), 58(7):2250-2262, doi:10.6038/cjg20150704.

     

    Shen X F, Ni B B, Gu X D, et al. 2015. A statistical analysis of solar wind parameters and geomagnetic indices for the Solar Cycle 23. Chinese Journal of Geophysics (in Chinese), 58(2):362-370, doi:10.6038/cjg20150202.

     

    Shi L W, Shen C L, Wang Y M. 2014. The interplanetary origins of geomagnetic storm with Dstmin ≤ -50 nT in 2007-2012. Chinese Journal of Geophysics (in Chinese), 57(11):3822-3833, doi:10.6038/cjg20141136.

     

    Wang G Q, Volwerk M, Nakamura R et al. 2014. Flapping current sheet with superposed waves seen in space and on the ground. Journal of Geophysical Research:Space Physics, 119(12):10078-10091, doi:10.1002/2014JA020526.

     

    Wang G Q, Zhang T L, Ge Y S. 2015a. Spatial distribution of magnetic fluctuation power with period 40 to 600 s in the magnetosphere observed by THEMIS. Journal of Geophysical Research:Space Physics, 120(11):9281-9293, doi:10.1002/2015JA021584.

     

    Wang G Q, Ge Y S, Zhang T L, et al. 2015b. A statistical analysis of Pi2-band waves in the plasma sheet and their relation to magnetospheric drivers. Journal of Geophysical Research:Space Physics, 120(8):6167-6175, doi:10.1002/2014JA020753.

     

    Wang G Q, Zhang T L, Volwerk M, et al. 2016. Mirror mode structures ahead of dipolarization front near the neutral sheet observed by Cluster. Geophysical Research Letters, 43(17):8853-8858, doi:10.1002/2016GL070382.

     

    Wang G Q, Volwerk M, Zhang T L, et al. 2017. High-latitude Pi2 pulsations associated with kink-like neutral sheet oscillations. Journal of Geophysical Research:Space Physics, 122(3):2889-2899, doi:10.1002/2016JA023370.

     

    Wu Q, Hong M H, Du A M, et al. 2012. Multi-point joint observations of long-time continual Pc5 ULF waves on 3 March 2007. Chinese Journal of Geophysics (in Chinese), 55(11):3568-3575, doi:10.6038/j.issn.0001-5733.2012.11.006.

     

    Xiao S D, Zhang T L, Ge Y S, et al. 2016. A statistical study on the shape and position of the magnetotail neutral sheet. Annales Geophysicae, 34(2):303-311, doi:10.5194/angeo-34-303-2016.

     

    Zhang T L, Russell C T, Zambelli W, et al. 2008, Behavior of current sheets at directional magnetic discontinuities in the solar wind at 0.72 AU. Geophysical Research Letters, 35(24):L24102, doi:10.1029/2008GL036120.

     

    Zhang T L, Lu Q M, Baumjohann W, et al. 2012. Magnetic reconnection in the near Venusian magnetotail. Science, 336(6081):567-570. doi: 10.1126/science.1217013

     

    刘建坤, 葛亚松, 张铁龙等. 2017.地球磁尾等离子体片磁洞的统计分析.地球物理学报, 60(3):873-878, doi:10.6038/cjg20170301. http://www.geophy.cn//CN/abstract/abstract13524.shtml

     

    孟立飞, 潘宗浩, 易忠等. 2018.基于Davis-Smith方法计算卫星磁强计零位补偿的误差特征研究.地球物理学报, 61(3):3545-3551, doi:10.6038/cjg2018L0264. http://www.geophy.cn//CN/abstract/abstract14658.shtml

     

    邱娜, 陈艳红, 王文斌等. 2015.中低纬地区电离层对CIR和CME响应的统计分析.地球物理学报, 58(7):2250-2262, doi:10.6038/cjg20150704. http://www.geophy.cn//CN/abstract/abstract11646.shtml

     

    沈晓飞, 倪彬彬, 顾旭东等. 2015.第23太阳活动周期太阳风参数及地磁指数的统计分析.地球物理学报, 58(2):362-370, doi:10.6038/cjg20150202. http://www.geophy.cn//CN/abstract/abstract11241.shtml

     

    史良文, 申成龙, 汪毓明. 2014.2007-2012年Dstmin ≤ -50 nT的中等以上地磁暴的行星际源统计.地球物理学报, 57(11):3822-3833, doi:10.6038/cjg20141136. http://www.geophy.cn//CN/abstract/abstract10979.shtml

     

    吴奇, 洪明华, 杜爱民等. 2012.2007年3月3日长时间持续Pc5 ULF波的多点联合观测分析.地球物理学报, 55(11):3568-3575, doi:10.6038/j.issn.0001-5733.2012.11.006. http://www.geophy.cn//CN/abstract/abstract9051.shtml

  • 加载中

(6)

计量
  • 文章访问数:  395
  • PDF下载数:  296
  • 施引文献:  0
出版历程
收稿日期:  2018-10-14
修回日期:  2018-11-08
上线日期:  2019-04-05

目录