ZH-1卫星观测的VLF人工源信号特征分析与全波模拟

廖力, 赵庶凡, 申旭辉, 汪枫, 泽仁志玛, 黄建平, 张学民, 欧阳新艳, 鲁恒新. 2019. ZH-1卫星观测的VLF人工源信号特征分析与全波模拟. 地球物理学报, 62(4): 1210-1217, doi: 10.6038/cjg2019M0504
引用本文: 廖力, 赵庶凡, 申旭辉, 汪枫, 泽仁志玛, 黄建平, 张学民, 欧阳新艳, 鲁恒新. 2019. ZH-1卫星观测的VLF人工源信号特征分析与全波模拟. 地球物理学报, 62(4): 1210-1217, doi: 10.6038/cjg2019M0504
LIAO Li, ZHAO ShuFan, SHEN XuHui, WANH Feng, ZEREN ZhiMa, HUANG JianPing, ZHANG XueMin, OUYANG XinYan, LU HengXin. 2019. Characteristic analysis and full wave simulation of electrical field for China seismo-electromagnetic satellite observations radiated from VLF transmitter. Chinese Journal of Geophysics (in Chinese), 62(4): 1210-1217, doi: 10.6038/cjg2019M0504
Citation: LIAO Li, ZHAO ShuFan, SHEN XuHui, WANH Feng, ZEREN ZhiMa, HUANG JianPing, ZHANG XueMin, OUYANG XinYan, LU HengXin. 2019. Characteristic analysis and full wave simulation of electrical field for China seismo-electromagnetic satellite observations radiated from VLF transmitter. Chinese Journal of Geophysics (in Chinese), 62(4): 1210-1217, doi: 10.6038/cjg2019M0504

ZH-1卫星观测的VLF人工源信号特征分析与全波模拟

  • 基金项目:

    国家自然科学基金青年基金项目-地震引起的电离层中VLF人工源信号信噪比变化特征研究(41704156),自然基金面上项目(41574139,41674156),科技部重点研发计划课题(2018YFC1503501),国家国际合作专项(2014DFR21280),中国地震局地震预测研究所基本科研业务费(2015IES010103,2018IES0405),湖北省教育厅科学研究计划项目(Q20161605)共同资助

详细信息
    作者简介:

    廖力, 男, 1983年生, 助理研究员, 主要从事VLF电磁波传播模型数值模拟研究.E-mail:liaoli@cea-igp.ac.cn

    通讯作者: 赵庶凡, 女, 1985年生, 副研究员, 主要从事VLF电磁波传播及其耦合机理研究.E-mail:zsf2008bj@126.com
  • 中图分类号: P352

Characteristic analysis and full wave simulation of electrical field for China seismo-electromagnetic satellite observations radiated from VLF transmitter

More Information
  • 中国地震电磁监测试验卫星张衡一号(ZH-1)已于2018年2月2日成功发射,正在开展卫星数据在轨测试,并对卫星数据质量进行判定.本文对ZH-1卫星2018年5月至6月夜侧的VLF频段电场功率谱数据进行了分析.通过分析位于不同L值、具有不同发射频率的多个VLF人工源上空的卫星重访轨道观测数据,发现ZH-1卫星记录的人工源信号电场变化标准差与DEMETER卫星记录电场变化标准差几乎一致,说明ZH-1卫星观测数据具有较好的稳定性.通过重访轨道均值与全波模型计算结果对比,发现两者在数值上较为接近,在形态上较为一致,说明ZH-1卫星VLF频段电场功率谱数据具有一定的可靠性.此外,研究了VLF人工源上空及共轭区的电场分布特征和电波传播规律,并与DEMETER卫星的结果进行了对比,结果表明VLF人工源产生的电磁辐射穿透电离层后以导管或者非导管的哨声波模向共轭区传播,因为传播过程中的朗道阻尼,共轭区的电场能量比辐射源顶空更小.VLF人工源位于L < 1.5时,电磁波传播更容易发生非导管传播,VLF人工源信号导管传播模式在共轭区的电场响应相对于共轭点会发生一定程度北向偏移.

  • 加载中
  • 图 1 

    全球分布的VLF人工源

    Figure 1. 

    VLF transmitters around the world

    图 2 

    研究时段的地磁活动指数

    Figure 2. 

    Geomagnetic activity index during the research period

    图 3 

    ZH-1(第一行)与DEMETER(第二行)卫星记录的VLF人工源(NWC, GBZ, NAA, NPM)激发的电场

    Figure 3. 

    The electric field excited by VLF transmitters (NWC, GBZ, NAA, NPM) record by ZH-1 (first panel) and DEMETER (second panel)

    图 4 

    电子密度和碰撞频率剖面

    Figure 4. 

    The electron density and collision frequency profile

    图 5 

    ZH-1卫星(第一行)和DEMETER卫星(第二行)记录的VLF人工源(NWC, NAA, NPM)激发的电场对比

    Figure 5. 

    The electric field excited by VLF transmitters (NWC, NAA, NPM) record by ZH-1(first panel) and DEMETER (second panel) satellite

    图 6 

    ZH-1卫星记录的VLF人工源(NWC, NAA, NPM)激发的电场与模拟结果对比

    Figure 6. 

    Comparison of electric field excited by VLF transmitter (NWC, NAA, NPM) between ZH-1 satellite observation and simulation results

    表 1 

    VLF人工源分布及参数

    Table 1. 

    The parameters of VLF transmitters

    名称 纬度(°N) 经度(°E) L 地磁倾角(°) 地磁偏角(°) 频率(kHz) 工作模式
    NWC -21.82 114.17 1.32 -55.3 0.5 19.80 MSK
    GBZ 54.91 -3.28 2.48 67.4 -3.8 19.80 MSK
    NAA 44.65 -67.28 2.46 71 -12.2 24.00 MSK
    NPM 21.42 -158.15 1.14 38.0 9.9 21.40 MSK
    下载: 导出CSV
  •  

    Abel B, Thorne R M. 1998a. Electron scattering loss in Earth's inner magnetosphere:1. Dominant physical processes. Journal of Geophysical Research:Space Physics, 103(A2):2385-2396. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-97JA02920/

     

    Abel B, Thorne R M. 1998b. Electron scattering loss in Earth's inner magnetosphere:2. Sensitivity to model parameters. Journal of Geophysical Research:Space Physics, 103(A2):2397-2407. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-97JA02920/

     

    Barton C E. 1997. International Geomagnetic Reference Field:The seventh generation. Journal of Geomagnetism and Geoelectricity, 49(2-3):123-148. http://adsabs.harvard.edu/abs/1997JGG....49..123B

     

    Bilitza D, Reinisch B W. 2008. International Reference Ionosphere 2007:Improvements and new parameters. Advances in Space Research, 42(4):599-609. doi: 10.1016/j.asr.2007.07.048

     

    Bortnik J, Inan U S, Bell T F. 2006a. Temporal signatures of radiation belt electron precipitation induced by lightning-generated MR whistler waves:1. Methodology. Journal of Geophysical Research:Space Physics, 111(A2):A02204, doi:10.1029/2005JA011182.

     

    Bortnik J, Inan U S, Bell T F. 2006b. Temporal signatures of radiation belt electron precipitation induced by lightning-generated MR whistler waves:2. Global signatures. Journal of Geophysical Research:Space Physics, 111(A2):A02205, doi:10.1029/2005JA011398.

     

    Clilverd M A, Smith A J, Thomson N R. 1992a. The effects of ionospheric horizontal electron density gradients on whistler mode signals. Journal of Atmospheric and Terrestrial Physics, 54(7-8):1061-1074. doi: 10.1016/0021-9169(92)90072-S

     

    Clilverd M A, Thomson N R, Smith A J. 1992b. Observation of two preferred propagation paths for whistler mode VLF signals received at a non-conjugate location. Journal of Atmospheric and Terrestrial Physics, 54(7-8):1075-1079. doi: 10.1016/0021-9169(92)90073-T

     

    Clilverd M A, Rodger C J, Gamble R, et al. 2008. Ground-based transmitter signals observed from space:Ducted or nonducted? Journal of Geophysical Research:Space Physics, 113(A4):A04211, doi:10.1029/2007JA012602.

     

    Cohen M B, Inan U S. 2012. Terrestrial VLF transmitter injection into the magnetosphere. Journal of Geophysical Research:Space Physics, 117(A8):A08310, doi:10.1029/2012JA017992.

     

    Crary J H. 1961. The effect of the earth-ionosphere waveguide on whistlers[Ph. D. thesis]. California: Stanford University.

     

    Helliwell R A. 1965. Whistlers and Related Ionospheric Phenomena. Stanford, California:Stanford University Press.

     

    Inan U S, Chang H C, Helliwell R A. 1984. Electron precipitation zones around major ground-based VLF signal sources. Journal of Geophysical Research, 89(A5):2891-2906. doi: 10.1029/JA089iA05p02891

     

    Kulkarni P, Inan U S, Bell T F, et al. 2008. Precipitation signatures of ground-based VLF transmitters. Journal of Geophysical Research:Space Physics, 113(A7):A07214, doi:10.1029/2007JA012569.

     

    Lehtinen N G, Inan U S. 2008. Radiation of ELF/VLF waves by harmonically varying currents into a stratified ionosphere with application to radiation by a modulated electrojet. Journal of Geophysical Research Space Physics, 2008, 113(A6):A06301, doi:10.1029/2007JA012911.

     

    Lehtinen N G, Inan U S. 2009. Full-wave modeling of transionospheric propagation of VLF waves. Geophysical Research Letters, 36(3):L03104, doi:10.1029/2008GL036535.

     

    Li J D, Spasojevic M, Harid V, et al. 2014. Analysis of magnetospheric ELF/VLF wave amplification from the Siple Transmitter experiment. Journal of Geophysical Research:Space Physics, 119(3):1837-1850. doi: 10.1002/2013JA019513

     

    Liao L, Zhao S F, Zhang X M. 2017. Advances in the study of transionospheric propagation of VLF waves. Chinese Journal of Space Science (in Chinese), 37(3):277-283. http://www.en.cnki.com.cn/Article_en/CJFDTotal-KJKB201703006.htm

     

    Shen X H, Zhang X M, Yuan S G, et al. 2018a. The state-of-the-art of the China Seismo-Electromagnetic Satellite mission. Science China Technological Sciences, 61(5):634-642. doi: 10.1007/s11431-018-9242-0

     

    Shen X H, Zong Q-G, Zhang X M, 2018b. Introduction to special section on the China Seismo-Electromagnetic Satellite and initial results. Earth Planet. Phys., 2(6), 439-443. doi:10.26464/epp2018041.

     

    Starks M J, Quinn R A, Ginet G P, et al. 2008. Illumination of the plasmasphere by terrestrial very low frequency transmitters:Model validation. Journal of Geophysical Research:Space Physics, 113(A9):A09320, doi:10.1029/2008JA013112.

     

    Swanson E R, Kugel C P. 1972. VLF timing:Conventional and modern techniques including omega. Proceedings of the IEEE, 60(5):540-551. doi: 10.1109/PROC.1972.8688

     

    Tao X, Bortnik J, Friedrich M. 2010. Variance of transionospheric VLF wave power absorption. Journal of Geophysical Research:Space Physics, 115(A7):A07303, doi:10.1029/2009JA015115.

     

    Thorne R M. 2010. Radiation belt dynamics:The importance of wave-particle interactions. Geophysical Research Letters, 37(22):L22107, doi:10.1029/2010GL044990.

     

    Zhang X M, Zhao S F, Ruzhin Y, et al. 2017. The spatial distribution features of three Alpha transmitter signals at the topside ionosphere. Radio Science, 52(5):653-662, doi:10.1002/2016RS006219.

     

    Zhao S F, Zhang X M, Zhao Z Y, et al. 2015. Temporal variations of electromagnetic responses in the ionosphere excited by the NWC communication station. Chinese Journal of Geophysics (in Chinese), 58(7):2263-2273, doi:10.6038/cjg20150705.

     

    Zhao S F, Liao L, Zhang X M. 2017. Trans-ionospheric VLF wave power absorption of terrestrial VLF signal. Chinese Journal of Geophysics (in Chinese), 60(8):3004-3014, doi:10.6038/cjg20170809.

     

    廖力, 赵庶凡, 张学民. 2017. VLF波渗透电离层传播计算研究进展.空间科学学报, 37(3):277-283. http://d.old.wanfangdata.com.cn/Periodical/kjkxxb201703004

     

    赵庶凡, 张学民, 赵正予等. 2015. NWC通信台在电离层中激发电磁响应的时变特征.地球物理学报, 58(7):2263-2273, doi:10.6038/cjg20150705. http://www.geophy.cn//CN/abstract/abstract11647.shtml

     

    赵庶凡, 廖力, 张学民. 2017.地面VLF波穿透电离层的能量衰减变化.地球物理学报, 60(8):3004-3014, doi:10.6038/cjg20170809. http://www.geophy.cn//CN/abstract/abstract13913.shtml

  • 加载中

(6)

(1)

计量
  • 文章访问数:  517
  • PDF下载数:  343
  • 施引文献:  0
出版历程
收稿日期:  2018-08-13
修回日期:  2019-02-03
上线日期:  2019-04-05

目录