青藏高原冈底斯带及邻区重磁三维反演及岩浆岩特征研究

胡斌, 贾正元, 张贵宾, 张刚, 张昌榕, 孙仁斌, 陈涛. 2019. 青藏高原冈底斯带及邻区重磁三维反演及岩浆岩特征研究. 地球物理学报, 62(4): 1362-1376, doi: 10.6038/cjg2019M0467
引用本文: 胡斌, 贾正元, 张贵宾, 张刚, 张昌榕, 孙仁斌, 陈涛. 2019. 青藏高原冈底斯带及邻区重磁三维反演及岩浆岩特征研究. 地球物理学报, 62(4): 1362-1376, doi: 10.6038/cjg2019M0467
HU Bin, JIA ZhengYuan, ZHANG GuiBin, ZHANG Gang, ZHANG ChangRong, Sun RenBin, CHEN Tao. 2019. Three-dimensional inversion of gravity and magnetic data and its application in the study on the characteristics of magmatic rocks in the Gangdise belt and adjacent areas, Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 62(4): 1362-1376, doi: 10.6038/cjg2019M0467
Citation: HU Bin, JIA ZhengYuan, ZHANG GuiBin, ZHANG Gang, ZHANG ChangRong, Sun RenBin, CHEN Tao. 2019. Three-dimensional inversion of gravity and magnetic data and its application in the study on the characteristics of magmatic rocks in the Gangdise belt and adjacent areas, Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 62(4): 1362-1376, doi: 10.6038/cjg2019M0467

青藏高原冈底斯带及邻区重磁三维反演及岩浆岩特征研究

  • 基金项目:

    国家重点研发计划(2016YFC0600301,2017YFC0602204-01,2016YFC0600201)和中央高校基本科研业务费专项资金(2652016127)联合资助

详细信息
    作者简介:

    胡斌, 男, 1992年生, 中国地质大学(北京)博士生研究生, 主要从事重磁反演理论及深部探测等方面的研究.E-mail:759785247@qq.com

    通讯作者: 贾正元, 男, 1981年生, 实验师, 主要从事地球物理反演、重磁电勘探等研究.E-mail:jzy@cugb.edu.cn
  • 中图分类号: P541;P631

Three-dimensional inversion of gravity and magnetic data and its application in the study on the characteristics of magmatic rocks in the Gangdise belt and adjacent areas, Tibetan Plateau

More Information
  • 岩浆岩在青藏高原的大陆动力学研究中有着重要的作用,它既是构造演化的记录,又是重要构造-岩浆-成矿带的指示.本文主要基于冈底斯带及邻区的地面重力和航磁数据,首先进行地质-地球物理先验信息约束下的重磁2.5维交互式反演,再将2.5维反演结果作为参考模型加入到三维反演计算中,得到地下三维密度和磁化率结构.结合岩浆岩密度、磁化率统计资料和岩浆岩地球化学成果,推断研究区基性岩、Ⅰ型花岗岩和S型花岗岩的三维分布图,得到如下结论:S型花岗岩主要分布在冈底斯东带和冈底斯弧背断隆带以北;北冈底斯的西部无明显的岩浆活动,而在其南侧和北侧,发现大量的隐伏基性岩和零散分布的Ⅰ型花岗岩;中生代Ⅰ型花岗岩在南冈底斯和冈底斯弧背断隆带广泛分布,且到新生代才出现大量的S型花岗岩.上述结果为中生代班公湖-怒江洋壳和新特提斯洋壳的双向剪刀式俯冲模式的观点提供了重要佐证,并认为班公湖-怒江洋壳在北冈底斯西部约84°E-88°E的范围内先后存在向北和向南俯冲的可能,北向羌塘地体下俯冲,南向冈底斯地体下俯冲.

  • 加载中
  • 图 1 

    冈底斯带构造-岩浆岩图(据朱弟成等,2008a莫宣学等,2013修改)

    Figure 1. 

    Tectono-magmatic rock map of the Gangdise belt(modified after Zhu et al., 2008a; Mo et al., 2013)

    图 2 

    研究区剩余布格重力异常等值线图

    Figure 2. 

    Contours of residual Bouguer gravity anomalies in the study area

    图 3 

    研究区剩余化磁极航磁异常等值线图

    Figure 3. 

    Contours of residual reduced to the pole aeromagnetic anomalies in the study area

    图 4 

    基于先验信息的重磁反演流程图

    Figure 4. 

    Flow chart of gravity and magnetic inversion based on prior information

    图 5 

    845剖面2.5维反演结果立体展示

    Figure 5. 

    Stereo display of 2.5-dimensional inversion results of 845 profile

    图 6 

    865、955剖面重磁2.5维反演结果

    Figure 6. 

    2.5-dimensional inversion results of 865 and 955 profiles

    图 7 

    参考模型及权重设置

    Figure 7. 

    Reference models and weight assumed

    图 8 

    密度结构图

    Figure 8. 

    3D view of density structure

    图 9 

    磁化率结构图

    Figure 9. 

    3D view of susceptibility structure

    图 10 

    冈底斯带岩体三维分布图

    Figure 10. 

    3D distribution of pluton in the Gangdise belt

    图 11 

    冈底斯带岩体水平位置分布图

    Figure 11. 

    Horizontal distribution of pluton in the Gangdise belt

    表 1 

    研究区地质单元物性参考表

    Table 1. 

    Physical property parameters of geological units in the study area

    地质单元 密度范围
    /(g·cm-3)
    磁化率范围
    /(×10-5SI)
    密度
    特征
    磁化率
    特征
    沉积地层 2.62 0 较低
    结晶基底 2.79 0
    低密度层 2.60 0
    中地壳 2.67 0 背景
    中、酸性侵入岩 2.55~2.65 100~1600 弱~较高
    基性、超基性侵入岩 2.70~2.81 500~6700
    沉积凹陷 2.55 0
    火山岩地层 2.62 200~1200 较低 较高
    下载: 导出CSV
  •  

    Chen T, Zhang G B. 2018. Forward modeling of gravity anomalies based on cell mergence and parallel computing. Computers & Geosciences, 120:1-9, doi:10.1016/j.cageo.2018.07.007.

     

    Du D D, Qu X M, Wang G H, et al. 2011. Bidirectional subduction of the middle Tethys oceanic basin in the west segment of Bangonghu-Nujiang suture, Tibet:Evidence from zircon U-Pb LAICPMS dating and petrogeochemistry of arc granites. Acta Petrologica Sinica (in Chinese), 27(7):1993-2002. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107008

     

    Fu G M, Yan J Y, Zhang K, et al. 2017. Current status and progress of lithology identification technology. Progress in Geophysics (in Chinese), 32(1):0026-0040, doi:10.6038/pg20170104.

     

    Gao R, Wu G J. 1995. Geophysical model and geodynamic process of Yadong-Ge', ermu geoscience transect in Qinghai-Tibet Plateau. Journal of Changchun University of Earth Sciences (in Chinese), 25(3):241-250, doi:10.13278/j.cnki.jjuese.1995.03.001.

     

    Guan Q, Zhu D C, Zhao Z D, et al. 2010. Late Cretaceous adakites in the eastern segment of the Gangdese Belt, southern Tibet:Products of Neo-Tethyan ridge subduction? Acta Petrologica Sinica (in Chinese), 26(7):2165-2179. http://www.sciencedirect.com/science/article/pii/S1342937X09001968

     

    Guo X Y, Li W, Gao R, et al. 2017. Nonuniform subduction of the Indian crust beneath the Himalayas. Scientific Reports, 7:12497, doi:10.1038/s41598-017-12908-0.

     

    Harris N B W, Inger S, Xu R H. 1990. Cretaceous plutonism in central Tibet:an example of post-collision magmatism?. Journal of Volcanology and Geothermal Research, 44(1-2):21-32, doi:10.1016/0377-0273(90)90009-5.

     

    Hu J, Wan Y W, Tao Z, et al. 2014. New geochemistry and geochronology evidences related to southward subduction of Tethys ocean basin in west segment of Bangonghu-Nujiang suture belt. Journal of Chengdu University of Technology (Science & Technology Edition) (in Chinese), 41(4):505-515, doi:10.3969/j.issn.1671-9727.2014.04.14.

     

    Kang Z Q, Xu J F, Wang B D, et al. 2010. Qushenla Formation volcanic rocks in north Lhasa block; Products of Bangong Co-Nujiang Tethy's southward subduction. Acta Petrologica Sinica (in Chinese), 26(10):3106-3116. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201010022.htm

     

    Kapp P, DeCelles P G, Gehrels G E, et al. 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. GSA Bulletin, 119(7-8):917-933, doi:10.1130/B26033.1.

     

    Kong X R, Wang Q S, Xiong S B. 1999. Comprehensive geophysical profile and lithosphere structures and geodynamics in western Qinghai-Xizang (Tibetan) Plateau. Chinese Science Bulletin, 44(22):2022-2031, doi:10.3321/j.issn:0023-074X.1999.12.005.

     

    Kosarev G, Kind R, Sobolev S V, et al. 1999. Seismic evidence for a detached Indian lithospheric mantle beneath Tibet. Science, 283(5406):1306-1309, doi:10.1126/science.283.5406.1306.

     

    Lü Q T, Jiang M, Ma K Y, et al. 1996. Three-dimensional travel time inversion and deep structure in the southern part of the Qinghai-Tibet Plateau. Acta Seismologica Sinica (in Chinese), 18(4):451-459. http://www.sciencedirect.com/science/article/pii/0012821X95002355

     

    Lü Q T, Qi G, Yan J. 2013.3D geologic model of Shizishan ore field constrained by gravity and magnetic interactive modeling:A case history. Geophysics, 78(1):B25-B35, doi:10.1190/GEO2012-0126.1.

     

    Lan X Y, Du J G, Yan J Y, et al. 2015.3D gravity and magnetic interactive inversion modeling based on prior information:A case study of the Tongling ore concentration area. Chinese Journal of Geophysics (in Chinese), 58(12):4436-4449, doi:10.6038/cjg20151209.

     

    Leier A L, Decelles P G, Kapp P, et al. 2007. Lower cretaceous strata in the Lhasa terrane, Tibet, with implications for understanding the early tectonic history of the Tibetan Plateau. Journal of Sedimentary Research, 77(9-10):809-825, doi:10.2110/jsr.2007.078.

     

    Li G H, Bai L, Zhou Y Z, et al. 2018. Seismological study of the low-velocity layer atop the mantle transition zone. Progress in Geophysics (in Chinese), 33(4):1366-1373, doi:10.6038/pg2018BB0293.

     

    Li W L. 2014. The analysis of skarn type deposit gravity and magnetic anomaly characteristics in Gangdise metallogenic (in Chinese). Chengdu: Chengdu University of Technology.

     

    Li Y G, Oldenburg D W. 1996.3-D inversion of magnetic data. Geophysics, 61(2):394-408, doi:10.1190/1.1443968.

     

    Li Y G, Oldenburg D W. 1998.3-D inversion of gravity data. Geophysics, 63(1):109-119, doi:10.1190/1.1444302.

     

    Li Y G, Oldenburg D W. 2003. Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method. Geophysical Journal International, 152(2):251-265, doi:10.1046/j.1365-246X.2003.01766.x.

     

    Liu F, Yang J S, Chen S Y, et al. 2013. Geochemistry and Sr-Nd-Pb isotopic composition of mafic rocks in the western part of Yarlung Zangbo suture zone:Evidence for intra-oceanic supra-subduction within the Neo-Tethys. Geology in China (in Chinese), 40(3):742-755. http://d.wanfangdata.com.cn/Periodical/zgdizhi201303007

     

    Lu Z W, Gao R, Li H Q, et al. 2016. Crustal thickness variation from northern Lhasa terrane to southern Qiangtang terrane revealed by deep seismic reflection data. Geology in China (in Chinese), 43(5):1679-1687, doi:10.12029/gc20160516.

     

    Lu Z W, Gao R, Li Q S, et al. 2006. Deep geophysical probe and geodynamic study on the Qinghai-Tibet Plateau (1958-2004). Chinese Journal of Geophysics (in Chinese), 49(3):753-770. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX200603019.htm

     

    Mo X X. 2011. Magmatism and evolution of the Tibetan Plateau. Geological Journal of China Universities (in Chinese), 17(3):351-367, doi:10.3969/j.issn.1006-7493.2011.03.001.

     

    Mo X X, Dong G C, Zhao Z D, et al. 2005. Spatial and temporal distribution and characteristics of granitoids in the Gangdese, Tibet and implication for crustal growth and evolution. Geological Journal of China Universities (in Chinese), 11(3):281-290.

     

    Mo X X, Dong X C, Zhao Z D, et al. 2013. Tectonic-Magmatic Rock Map and Specification for the Qinghai-Tibet Plateau and Adjacent Areas (in Chinese). Beijing:Geological Publishing House.

     

    Pan G T, Mo X X, Hou Z Q, et al. 2006. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrologica Sinica (in Chinese), 22(3):521-533. http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200603001.htm

     

    Qi G, Lü Q T, Yan J Y, et al. 2012. Geologic constrained 3D gravity and magnetic modeling of Nihe deposit-A case study. Chinese Journal of Geophysics (in Chinese), 55(12):4194-4206, doi:10.6038/j.issn.0001-5733.2012.12.031.

     

    Qu X M, Wang R J, Xin H B, et al. 2009. Geochronology and geochemistry of igneous rocks related to the subduction of the Tethys oceanic plate along the Bangong Lake arc zone, the western Tibetan Plateau. Geochimica (in Chinese), 38(6):523-535. http://en.cnki.com.cn/Article_en/CJFDTotal-DQHX200906005.htm

     

    Ran H, Wang G H, Liang X, et al. 2015. The Late Jurassic diorite in Rongma area, southern Qiangtang terrane, Tibetan Plateau:Product of northward subduction of the Bangong Co-Nujiang River Tethys Ocean. Geological Bulletin of China (in Chinese), 34(5):815-825. http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201505002.htm

     

    Teng J W, Wang S Z, Yao Z X, et al. 1980. Characteristics of the geophysical fields and plate tectonics of the Qinghai-Xizang Plateau and its neighbouring regions. Acta Geophysica Sinica (in Chinese), 23(3):254-268.

     

    Teng J W, Xiong S B, Yin Z X, et al. 1983. Structure of the crust and upper mantle pattern and velocity distributional characteristics at northern region of the Himalayan Mountains. Acta Geophysica Sinica (in Chinese), 26(6):525-540.

     

    Teng J W, Zhang Z J, Wang G J, et al. 1999. The deep internal dynamical processes and new model of continental-continental collision in Himalayan collision orogenic zone. Chinese Journal of Geophysics (in Chinese), 42(4):481-494. http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX199904007.htm

     

    Tilmann F, Ni J, INDEPTH Ⅲ Seismic Team. 2003. Seismic imaging of the downwelling Indian lithosphere beneath central Tibet. Science, 300(5624):1427-1426, doi:10.1126/science.1082777.

     

    Wei W B, Martyn U, Jin S, et al. 2006. Conductivity structure of crust and upper mantle beneath the northern Tibetan Plateau:results of super-wide band magnetotelluric sounding. Chinese Journal of Geophysics, 49(4):1098-1110, doi:10.1002/cjg2.933.

     

    Williams N C. 2008. Geologically-constrained UBC-GIF gravity and magnetic inversions with examples from the Agnew-Wiluna greenstone belt, Western Australia[Ph.D.thesis]. Vancouver: University of British Columbia.

     

    Wu G J, Gao R, Yu Q F, et al. 1991. Integrated investigations of the Qinghai-Tibet Plateau along the Yadong-Golmud geoscience transect. Acta Geophysica Sinica (in Chinese), 34(5):552-562. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX199105002.htm

     

    Xiong S Q. 2001. Aeromagnetic Survey in Central and Western Qinghai-Tibet Plateau (in Chinese). Beijing:Geological Publishing House.

     

    Xu R K, Zheng Y Y, Zhao P J, et al. 2007. Definition and geological significance of the Gacangjian volcanic arc north of Dongqiao, Tibet. Geology in China (in Chinese), 34(5):768-777. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200705002.htm

     

    Yang W C, Hou Z Z, Yu C Q. 2015 Three-dimensional density structure of the Tibetan Plateau and crustal mass movement. Chinese Journal of Geophysics (in Chinese), 58(11):4223-4234, doi:10.6038/cjg20151128.

     

    Zhang M H. 2015. Results of Regional Gravity Survey in the Tibetan Plateau-Comprehensive Research (in Chinese). Beijing:Geological Publishing House, 88.

     

    Zhang Z J, Teng J W, Li Y K, et al. 2004. Crustal structure of seismic velocity in southern tibet and east-westward escape of the crustal material. Science in China Series D:Earth Sciences, 47(6):500-506, doi:10.3321/j.issn:1006-9267.2002.10.001.

     

    Zhao W J, Nelson K D, Che J, et al. 1993. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature, 366(6455):557-559, doi:10.1038/366557a0.

     

    Zheng H W, Meng L S, He R Z. 2010. The matched-filter analysis of bouguer gravity anomaly in Qinghai-Tibet Plateau and its tectonic implications. Geology in China (in Chinese), 37(4):995-1001. http://cn.bing.com/academic/profile?id=b4cf1ca7e5b7756b292c0b2dca701c10&encoded=0&v=paper_preview&mkt=zh-cn

     

    Zhou Z Y, Chang S S, Ning Y L, et al. 2016. The application of 2.5D human-computer interaction inversion to aeromagnetic anomaly interpretation. Geophysical and Geochemical Exploration (in Chinese), 40(6):1232-1236, doi:10.11720/wtyht.2016.6.28.

     

    Zhu D C, Pan G T, Mo X X, et al. 2006. Late Jurassic-Early Cretaceous geodynamic setting in middle-northern Gangdese:New insights from volcanic rocks. Acta Petrologica Sinica (in Chinese), 22(3):534-546. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603002

     

    Zhu D C, Pan G T, Wang L Q, et al. 2008a. Spatial-temporal distribution and tectonic setting of Jurassic magmatism in the Gangdise belt, Tibet, China. Geological Bulletin of China (in Chinese), 27(4):458-468. http://d.old.wanfangdata.com.cn/NSTLQK/10.1039-c0cc02534h/

     

    Zhu D C, Pan G T, Wang L Q, et al. 2008b. Tempo-spatial variations of Mesozoic magmatic rocks in the Gangdise belt, Tibet, China, with a discussion of geodynamic setting-related issues. Geological Bulletin of China (in Chinese), 27(9):1535-1550.

     

    杜德道, 曲晓明, 王根厚等. 2011.西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据.岩石学报, 27(7):1993-2002. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107008

     

    付光明, 严加永, 张昆, 等. 2017.岩性识别技术现状与进展.地球物理学进展, 32(1):0026-0040, doi:10.6038/pg20170104.

     

    高锐, 吴功建. 1995.青藏高原亚东-格尔木地学断面地球物理综合解释模型与现今地球动力学过程.长春地质学院学报, 25(3):241-250, doi:10.13278/j.cnki.jjuese.1995.03.001.

     

    管琪, 朱弟成, 赵志丹等. 2010.西藏南部冈底斯带东段晚白垩世埃克岩:新特提斯洋脊俯冲的产物?.岩石学报, 26(7):2165-2179. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201007018

     

    胡隽, 万永文, 陶专等. 2014.班公湖-怒江缝合带西段特提斯洋盆南向俯冲的地球化学和年代学证据.成都理工大学学报(自然科学版), 41(4):505-515, doi:10.3969/j.issn.1671-9727.2014.04.14.

     

    康志强, 许继峰, 王保弟, 等. 2010.拉萨地块北部去申拉组火山岩:班公湖-怒江特提斯洋南向俯冲的产物?.岩石学报, 26(10):3106-3116. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201010022

     

    孔祥儒, 王谦身, 熊绍柏. 1999.青藏高原西部综合地球物理剖面和岩石圈结构与动力学.科学通报, 44(12):1257-1265, doi:10.3321/j.issn:0023-074X.1999.12.005.

     

    兰学毅, 杜建国, 严加永等. 2015.基于先验信息约束的重磁三维交互反演建模技术——以铜陵矿集区为例.地球物理学报, 58(12):4436-4449, doi:10.6038/cjg20151209. http://www.geophy.cn/CN/abstract/abstract12030.shtml

     

    李国辉, 白玲, 周元泽, 等. 2018.地幔过渡带顶部低速层地震学研究进展.地球物理学进展, 33(4):1366-1373, doi:10.6038/pg2018BB0293.

     

    李伟林. 2014.冈底斯成矿带矽卡岩型矿床重磁异常特征研究[硕士论文].成都: 成都理工大学.http://cdmd.cnki.com.cn/article/cdmd-10616-1015535298.htm

     

    刘飞, 杨经绥, 陈松永等. 2013.雅鲁藏布江缝合带西段基性岩地球化学和Sr-Nd-Pb同位素特征:新特提斯洋内俯冲的证据.中国地质, 40(3):742-755. doi: 10.3969/j.issn.1000-3657.2013.03.007

     

    卢占武, 高锐, 李洪强等. 2016.深反射地震数据揭示的拉萨地体北部到羌塘地体南部地壳厚度的变化.中国地质, 43(5):1679-1687, doi:10.12029/gc20160516.

     

    卢占武, 高锐, 李秋生等. 2006.中国青藏高原深部地球物理探测与地球动力学研究(1958-2004).地球物理学报, 49(3):753-770. doi: 10.3321/j.issn:0001-5733.2006.03.019 http://www.geophy.cn/CN/abstract/abstract49.shtml

     

    吕庆田, 姜枚, 马开义等. 1996.三维走时反演与青藏高原南部深部构造.地震学报, 18(4):451-459. http://www.cqvip.com/qk/93548X/199604/2257395.html

     

    莫宣学. 2011.岩浆作用与青藏高原演化.高校地质学报, 17(3):351-367, doi:10.3969/j.issn.1006-7493.2011.03.001.

     

    莫宣学, 董国臣, 赵志丹等. 2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报, 11(3):281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001

     

    莫宣学, 董学臣, 赵志丹等. 2013.青藏高原及邻区构造-岩浆岩图及说明书(1:1500000).北京:地质出版社.

     

    潘桂棠, 莫宣学, 侯增谦等. 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001

     

    祁光, 吕庆田, 严加永等. 2012.先验地质信息约束下的三维重磁反演建模研究——以安徽泥河铁矿为例.地球物理学报, 55(12):4194-4206, doi:10.6038/j.issn.0001-5733.2012.12.031. http://www.geophy.cn/CN/abstract/abstract9114.shtml

     

    曲晓明, 王瑞江, 辛洪波等. 2009.西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学.地球化学, 38(6):523-535. doi: 10.3321/j.issn:0379-1726.2009.06.002

     

    冉皞, 王根厚, 梁晓等. 2015.青藏高原南羌塘荣玛晚侏罗世闪长岩:班公湖-怒江特提斯洋向北俯冲产物.地质通报, 34(5):815-825. doi: 10.3969/j.issn.1671-2552.2015.05.002

     

    滕吉文, 王绍舟, 姚振兴等. 1980.青藏高原及其邻近地区的地球物理场特征与大陆板块构造.地球物理学报, 23(3):254-268. doi: 10.3321/j.issn:0001-5733.1980.03.003 http://www.geophy.cn/CN/abstract/abstract5308.shtml

     

    滕吉文, 熊绍柏, 尹周勋等. 1983.喜马拉雅山北部地区的地壳结构模型和速度分布特征.地球物理学报, 26(6):525-540. doi: 10.3321/j.issn:0001-5733.1983.06.003 http://www.geophy.cn/CN/abstract/abstract5173.shtml

     

    滕吉文, 张中杰, 王光杰等. 1999.喜马拉雅碰撞造山带的深层动力过程与陆-陆碰撞新模型.地球物理学报, 42(4):481-494. doi: 10.3321/j.issn:0001-5733.1999.04.007 http://www.geophy.cn/CN/abstract/abstract3791.shtml

     

    吴功建, 高锐, 余钦范等. 1991.青藏高原"亚东-格尔木地学断面"综合地球物理调查与研究.地球物理学报, 34(5):552-562. doi: 10.3321/j.issn:0001-5733.1991.05.003 http://www.geophy.cn/CN/abstract/abstract4551.shtml

     

    熊盛青. 2001.青藏高原中西部航磁调查.北京:地质出版社.

     

    许荣科, 郑有业, 赵平甲等. 2007.西藏东巧北尕苍见岛弧的厘定及地质意义.中国地质, 34(5):768-777. doi: 10.3969/j.issn.1000-3657.2007.05.003

     

    杨文采, 侯遵泽, 于常青. 2015.青藏高原地壳的三维密度结构和物质运动.地球物理学报, 58(11):4223-4234, doi:10.6038/cjg20151128. http://www.geophy.cn/CN/abstract/abstract11993.shtml

     

    张明华. 2015.青藏高原区域重力调查成果-综合研究.北京:地质出版社, 88.

     

    张中杰, 滕吉文, 杨立强等. 2002.藏南地壳速度结构与地壳物质东西向"逃逸"-以佩枯错-普莫雍错宽角反射剖面为例.中国科学(D辑), 32(10):793-798, doi:10.3321/j.issn:1006-9267.2002.10.001.

     

    郑洪伟, 孟令顺, 贺日政. 2010.青藏高原布格重力异常匹配滤波分析及其构造意义.中国地质, 37(4):995-1001. doi: 10.3969/j.issn.1000-3657.2010.04.014

     

    周子阳, 常树帅, 宁媛丽等. 2016.2.5D人机交互反演在航磁异常解释中的应用.物探与化探, 40(6):1232-1236, doi:10.11720/wtyht.2016.6.28.

     

    朱弟成, 潘桂棠, 莫宣学等. 2006.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束.岩石学报, 22(3):534-546. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603002

     

    朱弟成, 潘桂棠, 王立全等. 2008a.西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境.地质通报, 27(4):458-468. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200804003

     

    朱弟成, 潘桂棠, 王立全等. 2008b.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论.地质通报, 27(9):1535-1550. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200809013

  • 加载中

(11)

(1)

计量
  • 文章访问数:  602
  • PDF下载数:  390
  • 施引文献:  0
出版历程
收稿日期:  2018-07-31
修回日期:  2019-01-08
上线日期:  2019-04-05

目录