基于正交秩-1矩阵追踪的天然地震数据重建研究:以加州San Jacinto断层密集地震台阵为例

张雪敏, 付丽华, 张海江, 彭佳明. 2019. 基于正交秩-1矩阵追踪的天然地震数据重建研究:以加州San Jacinto断层密集地震台阵为例. 地球物理学报, 62(4): 1427-1439, doi: 10.6038/cjg2019M0352
引用本文: 张雪敏, 付丽华, 张海江, 彭佳明. 2019. 基于正交秩-1矩阵追踪的天然地震数据重建研究:以加州San Jacinto断层密集地震台阵为例. 地球物理学报, 62(4): 1427-1439, doi: 10.6038/cjg2019M0352
ZHANG XueMin, FU LiHua, ZHANG HaiJiang, PENG JiaMing. 2019. Reconstruction of natural earthquake data based on Orthogonal Rank-one Matrix Pursuit and its application to dense seismic array around the San Jacinto Fault Zone in California. Chinese Journal of Geophysics (in Chinese), 62(4): 1427-1439, doi: 10.6038/cjg2019M0352
Citation: ZHANG XueMin, FU LiHua, ZHANG HaiJiang, PENG JiaMing. 2019. Reconstruction of natural earthquake data based on Orthogonal Rank-one Matrix Pursuit and its application to dense seismic array around the San Jacinto Fault Zone in California. Chinese Journal of Geophysics (in Chinese), 62(4): 1427-1439, doi: 10.6038/cjg2019M0352

基于正交秩-1矩阵追踪的天然地震数据重建研究:以加州San Jacinto断层密集地震台阵为例

  • 基金项目:

    国家自然科学基金项目(61601417,617012212),湖北省教育厅科学技术研究项目(B2017597)和"地球内部多尺度成像"湖北省重点实验室开放基金项目(SMIL-2018-06)资助

详细信息
    作者简介:

    张雪敏, 女, 1992年生, 硕士, 主要从事地震数据处理研究.E-mail:xmzhang@cug.edu.cn

    通讯作者: 付丽华, 女, 1979年生, 教授, 主要从事地震数据处理研究.E-mail:lihuafu@cug.edu.cn
  • 中图分类号: P631

Reconstruction of natural earthquake data based on Orthogonal Rank-one Matrix Pursuit and its application to dense seismic array around the San Jacinto Fault Zone in California

More Information
  • 由于受地理环境和采集成本等因素的影响,采集到的天然地震数据往往呈现不规则和不完整分布,将直接影响到后续的天然地震数据处理效果,因此需要对缺失数据进行重建.本文将一种基于降秩补全理论的正交秩-1矩阵追踪算法(Orthogonal Rank-One Matrix Pursuit,OR1MP)应用于加州San Jacinto断层带的天然地震数据重建.首先将空间数据的每个频率切片进行Hankel预变换,获取具有低秩结构特征的预变换矩阵,缺失地震道和随机噪声会增加数据预变换矩阵的秩,然后运用OR1MP算法进行降秩处理,最后做反Hankel变换,得到频域上的重建数据.OR1MP算法对2D和3D的加州San Jacinto断层带的天然地震数据实验结果表明,OR1MP算法能够有效地增加地震体的峰值信噪比,能较好地实现对天然地震信号的重建.

  • 加载中
  • 图 1 

    块Hankel矩阵的构造

    Figure 1. 

    The construction of block Hankel matrix

    图 2 

    加州San Jacinto断层1108个垂直分量ZLand传感器空间上密集的节点阵列图

    Figure 2. 

    Spatially dense nodal array diagram with 1108 vertical component ZLand sensors near San Jacinto fault zone, California

    图 3 

    数据缺失20%情况下San Jacinto断层带基于OR1MP算法的2D数据重建测试结果

    Figure 3. 

    The test of 2D data reconstruction by the OR1MP algorithm for the San Jacinto fault zone in the case of 20% missing traces

    图 4 

    数据缺失40%情况下San Jacinto断层带基于OR1MP算法的2D数据重建测试结果

    Figure 4. 

    The test of 2D data reconstruction by the OR1MP algorithm for the San Jacinto fault zone in the case of 40% missing traces

    图 5 

    数据缺失20%情况下的San Jacinto断层带2D数据重建结果频谱比较图

    Figure 5. 

    Comparison of the spectrograms for original and reconstructed 2D data results around the SJFZ in the case of 20% missing traces

    图 6 

    缺失40%数据情况下的San Jacinto断层带2D数据重建结果频谱比较图

    Figure 6. 

    Comparison of the spectrograms for original and reconstructed 2D data results around the SJFZ in the case of with 40% missing traces

    图 7 

    原始数据和利用OR1MP重建的第36道单道图

    Figure 7. 

    Comparison of the 36th trace for the original and reconstructed data via the OR1MP algorithm

    图 8 

    2D天然地震数据随着欠采样率从10%增加到50%,OR1MP和SSA两个不同算法重建数据SNR的变化

    Figure 8. 

    Variations of SNR for reconstructed 2D earthquake data by OR1MP and SSA algorthms along with the increase of the missing data ratios from 10% to 50%

    图 9 

    San Jacinto断层带缺失50%数据情况下利用OR1MP算法的重建结果切片图(y=5)

    Figure 9. 

    Thetest of the OR1MP algorithm on 3D earthquake data in the case of 50% data missing for San Jacinto fault zone

    图 10 

    San Jacinto断层带缺失50%数据情况下利用OR1MP算法天然地震重建结果切片图(y=10)

    Figure 10. 

    The test of the OR1MP algorithm on 3D earthquake data in the case of 50% data missing for San Jacinto fault zone

    图 11 

    San Jacinto断层带缺失50%数据情况下利用OR1MP算法天然地震数据重建结果切片图(y=16)

    Figure 11. 

    The test of the OR1MP algorithm on 3D earthquake data in the case of 50% data missing for San Jacinto fault zone

    图 12 

    3D天然地震数据随着欠采样率从10%增加到70%OR1MP和MSSA两个不同算法的重建SNR的变化

    Figure 12. 

    Variations of SNR for reconstructed 3D earthquake data by OR1MP and MSSA algorthms along with the increase of the missing data ratios from 10% to 70%

    算法:基于OR1MP的低秩矩阵补全算法
    输入:S,秩k.
          初始化:L0=0,θ0=0,l=1.
          for l=1:k
          步骤一:找到公式(10)残差的一对左上和右上的奇异向量(ul, vl),令Bl=ulvlT.
          步骤二:用公式更新权重θl.
          步骤三:
          end
          输出:
    下载: 导出CSV

    表 1 

    2D天然地震数据不同缺失率下重建数据的SNR

    Table 1. 

    The SNRs of the reconstructed data at different data missing ratios in the case of the 2D seismic data

    缺失率
    (%)
    SNR_before
    (dB)
    SNR_after_OR1MP
    (dB)
    SNR_after_SSA
    (dB)
    10% 10.0116 27.2199 19.0948
    20% 6.9727 23.3876 17.7292
    30% 5.2182 21.1293 15.3048
    40% 3.9750 19.9332 14.7027
    50% 3.0049 18.4174 14.1793
    下载: 导出CSV

    表 2 

    3D天然地震数据不同缺失率下OR1MP和MSSA算法重建数据的SNR的比较

    Table 2. 

    Comparison of SNRs of the reconstructed 3D earthquake data by OR1MP and MSSA algorithms at different data missing rates

    缺失率
    (%)
    SNR_before
    (dB)
    SNR_after _OR1MP
    (dB)
    SNR_after_MSSA
    (dB)
    10% 10.0071 27.0771 22.0657
    20% 6.9833 23.6627 21.8008
    30% 5.2274 21.8079 18.1214
    40% 3.9811 20.3970 17.8119
    50% 2.9100 19.2680 14.7548
    60% 2.2175 18.0043 13.5535
    70% 1.5475 17.0727 11.0614
    下载: 导出CSV
  •  

    Anderson J E, Tan L J, Wang D. 2012. Time-reversal checkpointing methods for RTM and FWI. Geophysics, 77(4):S93-S103. doi: 10.1190/geo2011-0114.1

     

    Ben-Zion Y, Vernon F L, Ozakin Y, et al. 2015. Basic data features and results from a spatially dense seismic array on the San Jacinto fault zone. Geophysical Journal International, 202(1):370-380. doi: 10.1093/gji/ggv142

     

    Cadzow J A. 1988. Signal enhancement-a composite property mapping algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(1):49-62. doi: 10.1109/29.1488

     

    Candès E J, Recht B. 2009. Exact matrix completion via convex optimization. Foundations of Computational Mathematics, 9(6):717-772. doi: 10.1007/s10208-009-9045-5

     

    Cao J J, Wang Y F, Yang C C. 2012. Seismic data restoration based on compressive sensing using the regularization and zero-norm sparse optimization. Chinese Journal of Geophysics (in Chinese), 55(2):596-607, doi:10.6038/j.issn.0001-5733.2012.02.022.

     

    Chen G X, Chen S C, Wang H C, et al. 2013. Geophysical data sparse reconstruction based on L0-norm minimization. Applied Geophysics, 10(2):181-190. doi: 10.1007/s11770-013-0380-6

     

    Chen K, Sacchi M D. 2014. Robust reduced-rank filtering for erratic seismic noise attenuation. Geophysics, 80(1):V1-V11.

     

    Chi B X, Dong L G, Liu Y Z. 2015. Correlation-based reflection full-waveform inversion. Geophysics, 80(4):R189-R202. doi: 10.1190/geo2014-0345.1

     

    Downton J, Holy D, Trad D, et al. 2010. The effect of interpolation on imaging and azimuthal AVO: a nordegg case study.//80th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts.

     

    Fu L H, Zhang M, Liu Z H, et al. 2018. Reconstruction of seismic data with missing traces using normalized Gaussian weighted filter. Journal of Geophysics and Engineering, 15(5):2009, doi:10.1088/1742-2140/aac31c.

     

    Gao J J, Sacchi M D, Chen X H. 2013. A fast reduced-rank interpolation method for prestack seismic volumes that depend on four spatial dimensions. Geophysics, 78(1):V21-V30.

     

    Gierse G, Otto D, Berhorst A, et al. 1949. CRS technique for advanced prestack merging and regularisation of vintage 3D seismic data.//34th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, 3624-3628.

     

    Hansen S M, Schmandt B. 2015. Automated detection and location of microseismicity at Mount St. Helens with a large-N geophone array. Geophysical Research Letters, 42(18):7390-7397.

     

    Hassani H, Zhigljavsky A. 2009. Singular spectrum analysis:methodology and application to economics data. Journal of Systems Science and Complexity, 22(3):372-394. doi: 10.1007/s11424-009-9171-9

     

    Hua Y. 1992. Estimating two-dimensional frequencies by matrix enhancement and matrix pencil. IEEE Transactions on Signal Processing, 40(9):2267-2280. doi: 10.1109/78.157226

     

    Jia Y N, Yu S W, Liu L N, et al. 2016. A fast rank-reduction algorithm for three-dimensional seismic data interpolation. Journal of Applied Geophysics, 132:137-145. doi: 10.1016/j.jappgeo.2016.06.010

     

    Lai M J, Xu Y Y, Yin W T. 2013. Improved iteratively reweighted least squares for unconstrained smoothed lq minimization. SIAM Journal on Numerical Analysis, 51(2):927-957. doi: 10.1137/110840364

     

    Li, V, Tsvankin L, Alkhalifah T. 2016. Analysis of RTM extended images for VTI media. Geophysics, 81(3), S139-S150. doi: 10.1190/geo2015-0384.1

     

    Lin F C, Li D Z, Clayton R W, et al. 2013. High-resolution 3D shallow crustal structure in Long Beach, California:Application of ambient noise tomography on a dense seismic array. Geophysics, 78(4):Q45-Q56. doi: 10.1190/geo2012-0453.1

     

    Ling Y, Wang X, Li F, et al. 2016, Application of OVT processing to 3D seismic data in western China. SEG International Geophysical Conference, 353-355.

     

    Mansour H, Herrmann F J, Yılmaz Ö. 2013. Improved wavefield reconstruction from randomized sampling via weighted one-norm minimization. Geophysics, 78(5):V193-V206. doi: 10.1190/geo2012-0383.1

     

    Naghizadeh M, Sacchi M D. 2009. f-x adaptive seismic-trace interpolation. Geophysics, 74(1):V9-V16. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ028441802/

     

    Naghizadeh M, Sacchi M D. 2013. Multidimensional de-aliased Cadzow reconstruction of seismic records. Geophysics, 78(1):A1-A5.

     

    Oropeza V, Sacchi M D. 2011. Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis. Geophysics, 6(3):V25-V32. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0221970601/

     

    Stanton A, Sacchi M D. 2013. Shear wave splitting parameter estimation using a regular distribution of azimuths.//63th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, 1-4.

     

    Trickett S, Burroughs L, Milton A, et al. 2010. Rank-reduction-based trace interpolation.//80th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, 3829-3833.

     

    Wang Z, Lai M, Lu Z, et al. 2014. Orthogonal rank-One matrix pursuit for matrix completion. Proceedings of the 31st International Conference on Machine Learning, 91-99.

     

    Yang Y, Ma J, Osher S. 2014. Seismic data reconstruction via matrix completion. Inverse Problems & Imaging, 7(4):1379-1392. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0231454446/

     

    Zhang J H, Hao J L, Zhao X, et al. 2016. Restoration of clipped seismic waveforms using projection onto convex sets method. Scientific Reports, 6(1):39056. doi: 10.1038/srep39056

     

    Zhao B, Wang Y, Lu J. 2012. Recent advances of multi-component seismic and some of its key issues. Oil Geophysical Prospecting, 47(3):506-516.

     

    Zhou Z Z, Howard M, Mifflin C. 2011. Use of RTM full 3D subsurface angle gathers for subsalt velocity update and image optimization:Case study at Shenzi field. Geophysics, 76(5):WB27-WB39. doi: 10.1190/geo2011-0065.1

     

    曹静杰, 王彦飞, 杨长春. 2012.地震数据压缩重构的正则化与零范数稀疏最优化方法.地球物理学报, 55(2):596-607, doi:10.6038/j.issn.0001-5733.2012.02.022. http://www.geophy.cn//CN/abstract/abstract8435.shtml

     

    赵波, 王赟, 芦俊. 2012.多分量地震勘探技术新进展及关键问题探讨.石油地球物理勘探, 47(3):506-516.

  • 加载中

(12)

(3)

计量
  • 文章访问数:  635
  • PDF下载数:  363
  • 施引文献:  0
出版历程
收稿日期:  2018-06-10
修回日期:  2018-10-25
上线日期:  2019-04-05

目录