A method for estimating GNSS instrumental biases and its application based on a receiver of multisystem
-
摘要:
随着全球导航卫星系统(Global Navigation Satellite Systems,GNSS)的不断发展,中国地区单个GNSS接收站在一个时刻可以接收到超过30颗GNSS卫星的信号,这为单站GNSS硬件延迟估算方法的研究提供了有利条件.本文首先通过GNSS硬件实验,分析了不同温度条件下GNSS系统硬件延迟的变化特征,研究结果显示:当温度快速变化时,硬件延迟变化比较剧烈,变化幅度可达12.53 TECU(1 TECU=10 16el·m-2);在恒温条件或室温条件下,硬件延迟变化比较缓慢,变化幅度在1.00 TECU左右.在GNSS系统硬件延迟实验的基础上,充分利用单站多星观测的特点,提出了一种基于单站多系统的GNSS硬件延迟的估算方法——单站三角分解与差分消元法,并将该方法应用于河北保定站2015-2017年GNSS系统硬件延迟的求解中.通过对估算的GNSS系统硬件延迟进行分析显示:单站三角分解与差分消元法具有计算速度快、独立性好的特点;在北斗系统上硬件延迟的求解效果优于GPS、GLONASS系统,硬件延迟求解的结果整体上比利用欧洲定轨中心全球电离层地图校正的结果大2.50~3.00TECU左右;同时,该方法在消除GNSS系统硬件延迟后,获得的垂直总电子含量(Total Electron Content,TEC)能较好地反映电离层TEC的周日变化、日出增强、半年变化、年变化和春秋分不对称性等特征.
Abstract:With the development of Global Navigation Satellite Systems (GNSS), the signal from more than 30 satellites of GNSS can be caught by a receiver in China at a time, which will provide conveniences for estimating instrumental biases of GNSS system. In this paper, instrumental biases of GNSS system have been firstly analyzed under different temperature conditions. The results show that instrumental biases are changed with the rapid change of temperature and the variation of instrumental biases can reach 12.53 total electron content unit (TECU, 1 TECU=1016el·m-2). Furthermore, the change of instrumental biases is slow and about 1.00 TECU under constant or room temperature. Based on the above experiments of instrumental biases, we have proposed a method of estimating GNSS instrumental biases for a receiver of multisystem. The method is named Triangle Decomposition and Difference Elimination (TDDE) method for single station and applied in analyzing GNSS data in Baoding during 2015-2017. Our analysis shows that TDDE is advanced in speed and independence for solving instrumental biases. The result obtained by TDDE in BeiDou Navigation Satellite System is better than that in GPS and GLONASS. Meanwhile, the instrumental biases corrected by TDDE are 2.50~3.00 TECU larger than those adjusted by Global Ionosphere Maps from Center for Obit Determination in Europe. In addition, the vertical TEC corrected by TDDE can clearly present diurnal variation, sunrise enhancement, semi-annual and annual variations, and equinoctial asymmetry of ionosphere TEC.
-
Key words:
- GNSS /
- Instrumental biases /
- Ionosphere /
- Total electron content
-
-
-
Burrell A G, Bonito N A, Carrano C S. 2009. Total electron content processing from GPS observations to facilitate ionospheric modeling. GPS solutions, 13(2):83-95. doi: 10.1007/s10291-008-0102-3
Cai C S, Li Z H, Zhang X H. 2002. A study of calibration method of GPS Satellite and receiver instrumental biases. Bulletin of Surveying and Mapping (in Chinese), (4):15-16. http://www.cqvip.com/Main/Detail.aspx?id=6125519
Chang Q, Zhang D H, Xiao Z, et al. 2001. A method for estimating GPS instrumental biases and its application in TEC calculation. Chinese Journal of Geophysics (in Chinese), 44(5):596-601. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX200105002.htm
Chang Q, Zhang D H, Xiao Z, et al. 2001. The estimation method of GPS instrumental biases. Chinese Science Bulletin, 46(3):204-207. doi: 10.1007/BF03187167
Chen Y, Liu L, Wan W, et al. 2012. Equinoctial asymmetry in solar activity variations of NmF2 and TEC. Annales Geophysicae, 30(3):613-622. doi: 10.5194/angeo-30-613-2012
Choi B K, Cho J H, Lee S J. 2011. Estimation and analysis of GPS receiver differential code biases using KGN in Korean Peninsula. Advances in Space Research, 47(9):1590-1599. doi: 10.1016/j.asr.2010.12.021
Ciraolo L, Azpilicueta F, Brunini C, et al. 2007. Calibration errors on experimental slant total electron content (TEC) determined with GPS. Journal of Geodesy, 81(2):111-120. doi: 10.1007/s00190-006-0093-1
Coco D S, Coker C, Dahlke S R, et al. 1991. Variability of GPS satellite differential group delay biases. IEEE Transactions on Aerospace and Electronic Systems, 27(6):931-938. doi: 10.1109/7.104264
Coster A, Williams J, Weatherwax A, et al. 2013. Accuracy of GPS total electron content:GPS receiver bias temperature dependence. Radio Science, 48(2):190-196. doi: 10.1002/rds.v48.2
Hernández-Pajares M, Juan J M, Sanz J, et al. 2011. The ionosphere:effects, GPS modeling and the benefits for space geodetic techniques. Journal of Geodesy, 85(12):887-907. doi: 10.1007/s00190-011-0508-5
Huang Y N, Jeng B S. 1978. On the forenoon bite-out in the critical frequency of the F2-layer. Journal of Atmospheric and Terrestrial Physics, 40(5):581-584. doi: 10.1016/0021-9169(78)90097-1
Huang Z, Yuan H, Wan W X. 2003. Test of GPS TEC hardware biases estimating methods. Chinese Journal of Radio Science (in Chinese), 18(4):472-476. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DBKX200304025.htm
Kawamura S, Balan N, Otsuka Y, et al. 2002. Annual and semiannual variations of the midlatitude ionosphere under low solar activity. Journal of Geophysical Research:Space Physics, 107(A8):1166, doi:10.1029/2001JA000267.
Li Z S, Yuan Y B, Li H, et al. 2012. Two-step method for the determination of the differential code biases of COMPASS satellites. Journal of Geodesy, 86(11):1059-1076. doi: 10.1007/s00190-012-0565-4
Li Z S, Yuan Y B, Wang N B, et al. 2015. SHPTS:Towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions. Journal of Geodesy, 89(4):331-345. doi: 10.1007/s00190-014-0778-9
Li Z S, Wang N B, Li M, et al. 2017. Evaluation and analysis of the global ionospheric TEC map in the frame of international GNSS services. Chinese Journal of Geophysics (in Chinese), 60(10):3718-3729, doi:10.6038/cjg20171003.
Liu L B, Wan W X. 2018. Chinese ionospheric investigations in 2016-2017. Earth Planet. Phys., 2(2):89-111, doi:10.26464/epp2018011.
Liu Y, Chen Y D, Liu L B. 2016. Local time dependence of ionospheric equinoctial asymmetry. Chinese Journal of Geophysics (in Chinese), 59(11):3941-3954, doi:10.6038/cjg20161101.
Ma G, Maruyama T. 2003. Derivation of TEC and estimation of instrumental biases from GEONET in Japan. Annales Geophysicae, 21(10):2083-2093. doi: 10.5194/angeo-21-2083-2003
Mao T, Wan W X, Yue X N, et al. 2008. An empirical orthogonal function model of total electron content over China. Radio Science, 43(2):RS2009, doi:10.1029/2007RS003629.
Rideout W, Coster A. 2006. Automated GPS processing for global total electron content data. GPS Solutions, 10(3):219-228. doi: 10.1007/s10291-006-0029-5
Sardón E, Zarraoa N. 1997. Estimation of total electron content using GPS data:How stable are the differential satellite and receiver instrumental biases?. Radio Science, 32(5):1899-1910. doi: 10.1029/97RS01457
Themens D R, Jayachandran P T, Langley R B, et al. 2013. Determining receiver biases in GPS-derived total electron content in the auroral oval and polar cap region using ionosonde measurements. GPS solutions, 17(3):357-369. doi: 10.1007/s10291-012-0284-6
Xiong B, Wan W X, Liu L B, et al. 2011. Ionospheric response to the X-class solar flare on 7 September 2005. Journal of Geophysical Research, 116(A11):A11317, doi:10.1029/2011JA016961.
Xiong B, Wan W X, Ning B Q, et al. 2014. A statistic study of ionospheric solar flare activity indicator. Space Weather, 12(1):29-40, doi:10.1002/2013SW001000.
Xiong B, Wan W X, Ning B Q, et al. 2014. Investigation of mid-and low-latitude ionosphere based on BDS, GLONASS and GPS observations. Chinese Journal of Geophysics (in Chinese), 57(11):3586-3599, doi:10.6038/cjg20141112.
Xiong B, Wan W X, Yu Y, et al. 2016. Investigation of ionospheric TEC over China based on GNSS data. Advances in Space Research, 58(6):867-877. doi: 10.1016/j.asr.2016.05.033
Yu T, Wan W X, Liu L B, et al. 2004. Global scale annual and semi-annual variations of daytime NmF2 in the high solar activity years. Journal of Atmospheric and Solar-Terrestrial Physics, 66(18):1691-1701. doi: 10.1016/j.jastp.2003.09.018
Yue X N, Schreiner W S, Kuo Y H, et al. 2012. Global 3-D ionospheric electron density reanalysis based on multisource data assimilation. Journal of Geophysical Research:Space Physics, 117(A9):A09325, doi:10.1029/2012JA017968.
Zhang D H, Shi H, Jin Y Q, et al. 2014. The variation of the estimated GPS instrumental bias and its possible connection with ionospheric variability. Science China Technological Sciences, 57(1):67-79. doi: 10.1007/s11431-013-5419-7
Zhong J H, Lei J H, Dou X K, et al. 2016. Is the long-term variation of the estimated GPS differential code biases associated with ionospheric variability?. GPS Solutions, 20(3):313-319. doi: 10.1007/s10291-015-0437-5
蔡昌盛, 李征航, 张小红. 2002. GPS系统硬件延迟修正方法的探讨.测绘通报, (4):15-16. doi: 10.3969/j.issn.0494-0911.2002.04.006
常青, 张东和, 萧佐等. 2001. GPS系统硬件延迟估计方法及其在TEC计算中的应用.地球物理学报, 44(5):596-601. doi: 10.3321/j.issn:0001-5733.2001.05.003 http://www.geophy.cn//CN/abstract/abstract3590.shtml
黄智, 袁洪, 万卫星. 2003. GPS TEC硬件偏差估计方法的有效性.电波科学学报, 18(4):472-476. doi: 10.3969/j.issn.1005-0388.2003.04.026
李子申, 王宁波, 李敏等. 2017.国际GNSS服务组织全球电离层TEC格网精度评估与分析.地球物理学报, 60(10):3718-3729, doi:10.6038/cjg20171003. http://www.geophy.cn//CN/abstract/abstract14040.shtml
刘勇, 陈一定, 刘立波. 2016.电离层春秋分不对称的地方时依赖.地球物理学报, 59(11):3941-3954, doi:10.6038/cjg20161101. http://www.geophy.cn//CN/abstract/abstract13180.shtml
熊波, 万卫星, 宁百齐等. 2014.基于北斗、GLONASS和GPS系统的中低纬电离层特性联合探测.地球物理学报, 57(11):3586-3599, doi:10.6038/cjg20141112. http://www.geophy.cn//CN/abstract/abstract10955.shtml
-