基于单站多系统的GNSS硬件延迟估算方法及其应用

熊波, 李肖霖, 万卫星, 佘承莉, 胡连欢, 丁锋, 赵必强. 2019. 基于单站多系统的GNSS硬件延迟估算方法及其应用. 地球物理学报, 62(4): 1199-1209, doi: 10.6038/cjg2019M0318
引用本文: 熊波, 李肖霖, 万卫星, 佘承莉, 胡连欢, 丁锋, 赵必强. 2019. 基于单站多系统的GNSS硬件延迟估算方法及其应用. 地球物理学报, 62(4): 1199-1209, doi: 10.6038/cjg2019M0318
XIONG Bo, LI XiaoLin, WAN WeiXing, SHE ChengLi, HU LianHuan, DING Feng, ZHAO BiQiang. 2019. A method for estimating GNSS instrumental biases and its application based on a receiver of multisystem. Chinese Journal of Geophysics (in Chinese), 62(4): 1199-1209, doi: 10.6038/cjg2019M0318
Citation: XIONG Bo, LI XiaoLin, WAN WeiXing, SHE ChengLi, HU LianHuan, DING Feng, ZHAO BiQiang. 2019. A method for estimating GNSS instrumental biases and its application based on a receiver of multisystem. Chinese Journal of Geophysics (in Chinese), 62(4): 1199-1209, doi: 10.6038/cjg2019M0318

基于单站多系统的GNSS硬件延迟估算方法及其应用

  • 基金项目:

    国家自然科学基金(41574151,41574162和41404127),中央高校基本科研业务费专项资金(2018MS128和2016MS94)和国家高技术研究发展计划(863计划,2014AA123503)项目,中国科学院"十三五"信息化建设专项(XXH13505-04)联合资助

详细信息
    作者简介:

    熊波, 男, 1979年生, 副教授, 主要从事GNSS-TEC的反演与电离层太阳耀斑效应方面的研究.E-mail:xiongbo@mail.iggcas.ac.cn

  • 中图分类号: P352

A method for estimating GNSS instrumental biases and its application based on a receiver of multisystem

  • 随着全球导航卫星系统(Global Navigation Satellite Systems,GNSS)的不断发展,中国地区单个GNSS接收站在一个时刻可以接收到超过30颗GNSS卫星的信号,这为单站GNSS硬件延迟估算方法的研究提供了有利条件.本文首先通过GNSS硬件实验,分析了不同温度条件下GNSS系统硬件延迟的变化特征,研究结果显示:当温度快速变化时,硬件延迟变化比较剧烈,变化幅度可达12.53 TECU(1 TECU=10 16el·m-2);在恒温条件或室温条件下,硬件延迟变化比较缓慢,变化幅度在1.00 TECU左右.在GNSS系统硬件延迟实验的基础上,充分利用单站多星观测的特点,提出了一种基于单站多系统的GNSS硬件延迟的估算方法——单站三角分解与差分消元法,并将该方法应用于河北保定站2015-2017年GNSS系统硬件延迟的求解中.通过对估算的GNSS系统硬件延迟进行分析显示:单站三角分解与差分消元法具有计算速度快、独立性好的特点;在北斗系统上硬件延迟的求解效果优于GPS、GLONASS系统,硬件延迟求解的结果整体上比利用欧洲定轨中心全球电离层地图校正的结果大2.50~3.00TECU左右;同时,该方法在消除GNSS系统硬件延迟后,获得的垂直总电子含量(Total Electron Content,TEC)能较好地反映电离层TEC的周日变化、日出增强、半年变化、年变化和春秋分不对称性等特征.

  • 加载中
  • 图 1 

    GNSS测量电离层TEC的流程图

    Figure 1. 

    The flow chart of ionosphere TEC measured by GNSS

    图 2 

    河北保定站的位置和2016年1月1日GNSS卫星在400 km高度上观测轨迹的分布

    Figure 2. 

    The geographical location of HBBD station and trace of observation points at the height of 400 kilometers for GNSS on January 1, 2016

    图 3 

    环境温度从-5°到25°条件下GNSS系统硬件延迟的变化

    Figure 3. 

    The change of receiver bias with the change of environmental temperature from -5 ℃ to 25 ℃

    图 4 

    在恒温35°条件下GNSS系统硬件延迟的变化

    Figure 4. 

    The change of receiver bias at 35 ℃

    图 5 

    在室温条件下两台零基线GNSS接收机测量的斜TEC和斜TEC差分的变化

    Figure 5. 

    The distribution of slant TECs (top) and their difference (bottom) obtained from two receivers of zero baselines at room temperature

    图 6 

    单站多系统的GNSS硬件延迟估算方法(单站三角分解与差分消元法)流程图

    Figure 6. 

    The Flow chart of GNSS instrumental biases estimation based on a receiver of multisystem (triangle decomposition and difference elimination method for single station)

    图 7 

    五种不同算法在估算GNSS硬件延迟过程中所使用的频率分布

    Figure 7. 

    The frequency distribution of five methods in estimating GNSS instrumental biases

    图 8 

    单站三角分解与差分消元法(虚线)和CODE-GIM校正法(实线)估算GNSS硬件延迟对比

    Figure 8. 

    The results of GNSS instrumental biases estimated by triangle decomposition and difference elimination method for single station (dash line) and CODE-GIM correction method (solid line)

    图 9 

    单站三角分解与差分消元法和CODE-GIM校正法估算GNSS硬件延迟之间的误差

    Figure 9. 

    The differences of GNSS instrumental biases estimated by triangle decomposition and difference elimination method for single station and CODE-GIM correction method

    图 10 

    单站三角分解与差分消元法(蓝色)和CODE-GIM校正法(红色)消除GNSS系统硬件延迟后获取的电离层垂直TEC

    Figure 10. 

    The vertical TEC measured by triangle decomposition and difference elimination method for single station (blue) and CODE-GIM correction method (red)

    图 11 

    单站三角分解与差分消元法消除GNSS系统硬件延迟后获取的电离层垂直TEC分布

    Figure 11. 

    The distribution of vertical TEC measured by triangle decomposition and difference elimination method for single station

  •  

    Burrell A G, Bonito N A, Carrano C S. 2009. Total electron content processing from GPS observations to facilitate ionospheric modeling. GPS solutions, 13(2):83-95. doi: 10.1007/s10291-008-0102-3

     

    Cai C S, Li Z H, Zhang X H. 2002. A study of calibration method of GPS Satellite and receiver instrumental biases. Bulletin of Surveying and Mapping (in Chinese), (4):15-16. http://www.cqvip.com/Main/Detail.aspx?id=6125519

     

    Chang Q, Zhang D H, Xiao Z, et al. 2001. A method for estimating GPS instrumental biases and its application in TEC calculation. Chinese Journal of Geophysics (in Chinese), 44(5):596-601. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX200105002.htm

     

    Chang Q, Zhang D H, Xiao Z, et al. 2001. The estimation method of GPS instrumental biases. Chinese Science Bulletin, 46(3):204-207. doi: 10.1007/BF03187167

     

    Chen Y, Liu L, Wan W, et al. 2012. Equinoctial asymmetry in solar activity variations of NmF2 and TEC. Annales Geophysicae, 30(3):613-622. doi: 10.5194/angeo-30-613-2012

     

    Choi B K, Cho J H, Lee S J. 2011. Estimation and analysis of GPS receiver differential code biases using KGN in Korean Peninsula. Advances in Space Research, 47(9):1590-1599. doi: 10.1016/j.asr.2010.12.021

     

    Ciraolo L, Azpilicueta F, Brunini C, et al. 2007. Calibration errors on experimental slant total electron content (TEC) determined with GPS. Journal of Geodesy, 81(2):111-120. doi: 10.1007/s00190-006-0093-1

     

    Coco D S, Coker C, Dahlke S R, et al. 1991. Variability of GPS satellite differential group delay biases. IEEE Transactions on Aerospace and Electronic Systems, 27(6):931-938. doi: 10.1109/7.104264

     

    Coster A, Williams J, Weatherwax A, et al. 2013. Accuracy of GPS total electron content:GPS receiver bias temperature dependence. Radio Science, 48(2):190-196. doi: 10.1002/rds.v48.2

     

    Hernández-Pajares M, Juan J M, Sanz J, et al. 2011. The ionosphere:effects, GPS modeling and the benefits for space geodetic techniques. Journal of Geodesy, 85(12):887-907. doi: 10.1007/s00190-011-0508-5

     

    Huang Y N, Jeng B S. 1978. On the forenoon bite-out in the critical frequency of the F2-layer. Journal of Atmospheric and Terrestrial Physics, 40(5):581-584. doi: 10.1016/0021-9169(78)90097-1

     

    Huang Z, Yuan H, Wan W X. 2003. Test of GPS TEC hardware biases estimating methods. Chinese Journal of Radio Science (in Chinese), 18(4):472-476. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DBKX200304025.htm

     

    Kawamura S, Balan N, Otsuka Y, et al. 2002. Annual and semiannual variations of the midlatitude ionosphere under low solar activity. Journal of Geophysical Research:Space Physics, 107(A8):1166, doi:10.1029/2001JA000267.

     

    Li Z S, Yuan Y B, Li H, et al. 2012. Two-step method for the determination of the differential code biases of COMPASS satellites. Journal of Geodesy, 86(11):1059-1076. doi: 10.1007/s00190-012-0565-4

     

    Li Z S, Yuan Y B, Wang N B, et al. 2015. SHPTS:Towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions. Journal of Geodesy, 89(4):331-345. doi: 10.1007/s00190-014-0778-9

     

    Li Z S, Wang N B, Li M, et al. 2017. Evaluation and analysis of the global ionospheric TEC map in the frame of international GNSS services. Chinese Journal of Geophysics (in Chinese), 60(10):3718-3729, doi:10.6038/cjg20171003.

     

    Liu L B, Wan W X. 2018. Chinese ionospheric investigations in 2016-2017. Earth Planet. Phys., 2(2):89-111, doi:10.26464/epp2018011.

     

    Liu Y, Chen Y D, Liu L B. 2016. Local time dependence of ionospheric equinoctial asymmetry. Chinese Journal of Geophysics (in Chinese), 59(11):3941-3954, doi:10.6038/cjg20161101.

     

    Ma G, Maruyama T. 2003. Derivation of TEC and estimation of instrumental biases from GEONET in Japan. Annales Geophysicae, 21(10):2083-2093. doi: 10.5194/angeo-21-2083-2003

     

    Mao T, Wan W X, Yue X N, et al. 2008. An empirical orthogonal function model of total electron content over China. Radio Science, 43(2):RS2009, doi:10.1029/2007RS003629.

     

    Rideout W, Coster A. 2006. Automated GPS processing for global total electron content data. GPS Solutions, 10(3):219-228. doi: 10.1007/s10291-006-0029-5

     

    Sardón E, Zarraoa N. 1997. Estimation of total electron content using GPS data:How stable are the differential satellite and receiver instrumental biases?. Radio Science, 32(5):1899-1910. doi: 10.1029/97RS01457

     

    Themens D R, Jayachandran P T, Langley R B, et al. 2013. Determining receiver biases in GPS-derived total electron content in the auroral oval and polar cap region using ionosonde measurements. GPS solutions, 17(3):357-369. doi: 10.1007/s10291-012-0284-6

     

    Xiong B, Wan W X, Liu L B, et al. 2011. Ionospheric response to the X-class solar flare on 7 September 2005. Journal of Geophysical Research, 116(A11):A11317, doi:10.1029/2011JA016961.

     

    Xiong B, Wan W X, Ning B Q, et al. 2014. A statistic study of ionospheric solar flare activity indicator. Space Weather, 12(1):29-40, doi:10.1002/2013SW001000.

     

    Xiong B, Wan W X, Ning B Q, et al. 2014. Investigation of mid-and low-latitude ionosphere based on BDS, GLONASS and GPS observations. Chinese Journal of Geophysics (in Chinese), 57(11):3586-3599, doi:10.6038/cjg20141112.

     

    Xiong B, Wan W X, Yu Y, et al. 2016. Investigation of ionospheric TEC over China based on GNSS data. Advances in Space Research, 58(6):867-877. doi: 10.1016/j.asr.2016.05.033

     

    Yu T, Wan W X, Liu L B, et al. 2004. Global scale annual and semi-annual variations of daytime NmF2 in the high solar activity years. Journal of Atmospheric and Solar-Terrestrial Physics, 66(18):1691-1701. doi: 10.1016/j.jastp.2003.09.018

     

    Yue X N, Schreiner W S, Kuo Y H, et al. 2012. Global 3-D ionospheric electron density reanalysis based on multisource data assimilation. Journal of Geophysical Research:Space Physics, 117(A9):A09325, doi:10.1029/2012JA017968.

     

    Zhang D H, Shi H, Jin Y Q, et al. 2014. The variation of the estimated GPS instrumental bias and its possible connection with ionospheric variability. Science China Technological Sciences, 57(1):67-79. doi: 10.1007/s11431-013-5419-7

     

    Zhong J H, Lei J H, Dou X K, et al. 2016. Is the long-term variation of the estimated GPS differential code biases associated with ionospheric variability?. GPS Solutions, 20(3):313-319. doi: 10.1007/s10291-015-0437-5

     

    蔡昌盛, 李征航, 张小红. 2002. GPS系统硬件延迟修正方法的探讨.测绘通报, (4):15-16. doi: 10.3969/j.issn.0494-0911.2002.04.006

     

    常青, 张东和, 萧佐等. 2001. GPS系统硬件延迟估计方法及其在TEC计算中的应用.地球物理学报, 44(5):596-601. doi: 10.3321/j.issn:0001-5733.2001.05.003 http://www.geophy.cn//CN/abstract/abstract3590.shtml

     

    黄智, 袁洪, 万卫星. 2003. GPS TEC硬件偏差估计方法的有效性.电波科学学报, 18(4):472-476. doi: 10.3969/j.issn.1005-0388.2003.04.026

     

    李子申, 王宁波, 李敏等. 2017.国际GNSS服务组织全球电离层TEC格网精度评估与分析.地球物理学报, 60(10):3718-3729, doi:10.6038/cjg20171003. http://www.geophy.cn//CN/abstract/abstract14040.shtml

     

    刘勇, 陈一定, 刘立波. 2016.电离层春秋分不对称的地方时依赖.地球物理学报, 59(11):3941-3954, doi:10.6038/cjg20161101. http://www.geophy.cn//CN/abstract/abstract13180.shtml

     

    熊波, 万卫星, 宁百齐等. 2014.基于北斗、GLONASS和GPS系统的中低纬电离层特性联合探测.地球物理学报, 57(11):3586-3599, doi:10.6038/cjg20141112. http://www.geophy.cn//CN/abstract/abstract10955.shtml

  • 加载中

(11)

计量
  • 文章访问数:  227
  • PDF下载数:  282
  • 施引文献:  0
出版历程
收稿日期:  2018-05-25
修回日期:  2019-02-22
上线日期:  2019-04-05

目录