致密碳酸盐岩跨频段岩石物理实验及频散分析

李闯, 赵建国, 王宏斌, 潘建国, 龙腾, 邓继新, 李智. 2020. 致密碳酸盐岩跨频段岩石物理实验及频散分析. 地球物理学报, 63(2): 627-637, doi: 10.6038/cjg2019M0294
引用本文: 李闯, 赵建国, 王宏斌, 潘建国, 龙腾, 邓继新, 李智. 2020. 致密碳酸盐岩跨频段岩石物理实验及频散分析. 地球物理学报, 63(2): 627-637, doi: 10.6038/cjg2019M0294
LI Chuang, ZHAO JianGuo, WANG HongBin, PAN JianGuo, LONG Teng, DENG JiXin, LI Zhi. 2020. Multi-frequency rock physics measurements and dispersion analysis on tight carbonate rocks. Chinese Journal of Geophysics (in Chinese), 63(2): 627-637, doi: 10.6038/cjg2019M0294
Citation: LI Chuang, ZHAO JianGuo, WANG HongBin, PAN JianGuo, LONG Teng, DENG JiXin, LI Zhi. 2020. Multi-frequency rock physics measurements and dispersion analysis on tight carbonate rocks. Chinese Journal of Geophysics (in Chinese), 63(2): 627-637, doi: 10.6038/cjg2019M0294

致密碳酸盐岩跨频段岩石物理实验及频散分析

  • 基金项目:

    国家科技重大专项课题"下古生界-前寒武系地球物理勘探关键技术研究"(2016ZX05004-003),国家自然科学基金项目"针对碳酸盐岩储层的跨频段(从地震频率-超声频率)岩石物理实验与建模研究"(41574103),以及"跨频段岩石物理实验与理论驱动的地震速度频散成像研究"(41974120)联合资助

详细信息
    作者简介:

    李闯, 男, 1982年7月生, 高级工程师, 主要从事岩石物理、储层预测研究.E-mail:lichuang@petrochina.com.cn

    通讯作者: 赵建国, 男, 1976年12月生, 主要从事跨频段地震岩石物理实验技术与理论研究.E-mail:zhaojg@cup.edu.cn
  • 中图分类号: P631

Multi-frequency rock physics measurements and dispersion analysis on tight carbonate rocks

More Information
  • 致密碳酸盐岩在成岩和后成岩过程中形成了复杂的孔隙结构特征,其速度等地震弹性参数不仅与孔隙度有关,而且还与孔隙结构特征密切相关.为了进一步研究致密碳酸盐岩内部流体相关的速度频散特征,针对致密碳酸盐岩进行实验室的频散测量与频散理论分析尤为重要.本研究选用了一块典型的致密型碳酸盐岩样品,在对样品进行了精细的包括CT扫描与镜下薄片的孔隙结构描述基础上,进行了实验室跨频段(从地震频段-超声频段)的频散测量与频散响应分析.比较实验室跨频段岩石物理频散测量可以获得如下认识:1)较之于典型的"喷射流"机制,改进的"喷射流"模型可以半定量地解释频散测量的结果,这大大提高了对致密碳酸盐岩频散响应的理解与认识;2)改进的"喷射流"模型还不能完全精确地匹配实验室频散测量结果,这说明除了微观尺度下的"喷射流"机制,还存在着其他控制频散与衰减的机制;3)本项工作对研究致密碳酸盐岩储层中不同频段地震波响应以及对储层预测与流体识别提供了理论依据.

  • 加载中
  • 图 1 

    设备“差分共振声谱法低频测试仪”原理及系统

    Figure 1. 

    Principle of the instrument "differential acoustic resonance spectroscopy" and acoustic resonator practicality picture

    图 2 

    应力-应变低频设备建造示意图

    Figure 2. 

    Construction diagram of low frequency stress-strain equipment

    图 3 

    致密碳酸盐岩孔隙结构描述

    Figure 3. 

    Description of pore structure of tight carbonate rock

    图 4 

    致密碳酸盐岩样品H803干燥与完全饱和水条件下纵、横波速度随围压变化规律图

    Figure 4. 

    Variation of P-wave velocity and S-wave velocity with confining pressure in dry and fully saturated water for H803 tight carbonate rock sample

    图 5 

    致密碳酸盐岩样品H803低频测量结果

    Figure 5. 

    Low frequency measurement results of H803 tight carbonate rock sample

    图 6 

    致密碳酸盐岩样品H803软孔隙纵横比分布及对应的孔隙度

    Figure 6. 

    Distribution of soft porosity aspect ratio and corresponding porosity of H803 tight carbonate rock sample

    图 7 

    基于单一孔隙比和基于喷射流理论的预测结果对比图

    Figure 7. 

    Comparison of prediction results based on single void ratio and jet flow theory

    图 8 

    改进的喷射流模型预测与纵横波速度频散测量的比较

    Figure 8. 

    Comparison between the prediction of improved jet flow model and the measurement of velocity dispersion of P-wave and S-wave

    表 1 

    低频岩石样品物性参数

    Table 1. 

    Physical parameters of low frequency rock samples

    样品编号 H803 实验条件
    样品埋深(m) 6699.8 -
    长度(cm) 3.51 -
    直径(cm) 3.81 -
    密度(g·cm-3) 2.65 -
    孔隙度(%) 2.24 -
    渗透率(μm2) 7.896×10-6 -
    实验压力(高频) 0~60 MPa 干燥,水饱和
    实验压力(低频) 0~10 MPa 完全水饱和
    频段范围(低频) 2~2000 Hz
    下载: 导出CSV
  •  

    Adam L, Batzle M, Brevik I. 2006. Gassmann′s fluid substitution and shear modulus variability in carbonates at laboratory seismic and ultrasonic frequencies. Geophysics, 71(6): F173-F183. doi: 10.1190/1.2358494

     

    Adam L, Batzle M. 2007. Elastic properties of carbonates from laboratory measurements at seismic and ultrasonic frequencies. The Leading Edge, 27(8): 1026-1032.

     

    Agersborg R, Johansen T A, Jakobsen M, et al. 2008. Effects of fluids and dual-pore systems on pressure-dependent velocities and attenuations in carbonates. Geophysics, 73(5): N35-N47. doi: 10.1190/1.2969774

     

    Anselmetti F S, Eberli G P. 1999. The velocity-deviation log: A tool to predict pore type and permeability trends in carbonate drill holes from sonic and porosity or density logs.AAPG Bulletin, 83(3): 450-466. http://cn.bing.com/academic/profile?id=a9731445e504838bbb99ee7b53efa4b5&encoded=0&v=paper_preview&mkt=zh-cn

     

    Ba J, Zhao J G, Carcione J M, et al. 2016. Compressional wave dispersion due to rock matrix stiffening by clay squirt flow. Geophysical Research Letters, 43(12): 6186-6195. doi: 10.1002/2016GL069312

     

    Ba J, Xu W H, Fu L Y, et al. 2017. Rock anelasticity due to patchy saturation and fabric heterogeneity: a double double-porosity model of wave propagation. Journal of Geophysical Research: Solid Earth, 122(3): 1949-1976. http://cn.bing.com/academic/profile?id=9496df0286359ba150bde447d7451222&encoded=0&v=paper_preview&mkt=zh-cn

     

    Baechle G T, Al-Kharusi L, Eberli G P, et al. 2007. Effect of spherical pore shapes on acoustic properties. //AAPG Annual Convention. At Long Beach, Ca: AAPG, 16, 7.

     

    Batzle M, Hofmann R, Prasad M, et al. 2005. Seismic attenuation: observations and mechanisms. //75th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts.

     

    Batzle M L, Han D H, Hofmann R. 2006. Fluid mobility and frequency-dependent seismic velocity-direct measurements. Geophysics, 71(1): N1-N9. doi: 10.1190/1.2159053

     

    David E C, Zimmerman R W. 2012. Pore structure model for elastic wave velocities in fluid-saturated sandstones. Journal of Geophysical Research: Solid Earth, 117(B7): B07210, doi: 10.1029/2012JB009195.

     

    Deng J X, Zhou H, Wang H, et al. 2015. The influence of pore structure in reservoir sandstone on dispersion properties of elastic waves. Chinese Journal of Geophysics (in Chinese), 58(9): 3389-3400, doi: 10.6038/cjg20150931. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201509031

     

    Gurevich B, Makarynska D, De Paula O B, et al. 2010. A simple model for squirt-flow dispersion and attenuation in fluid-saturated granular rocks. Geophysics, 75(6): N109-N120. doi: 10.1190/1.3509782

     

    Sharma R, Prasad M, Batzle M, et al. 2013. Sensitivity of flow and elastic properties to fabric heterogeneity in carbonates. Geophysical Prospecting, 61(2): 270-286. doi: 10.1111/1365-2478.12030

     

    Spencer J W Jr. 1981. Stress relaxations at low frequencies in fluid-saturated rocks: Attenuation and modulus dispersion. Journal of Geophysical Research: Solid Earth, 86(B3): 1803-1812. doi: 10.1029/JB086iB03p01803

     

    Verwer K, Eberli G, Baechle G, et al. 2010. Effect of carbonate pore structure on dynamic shear moduli. Geophysics, 75(1): E1-E8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=72162599fe9bdb067bcf693b2ad9a41c

     

    Wang S X, Zhao J G, Li Z H, et al. 2012. Differential acoustic resonance spectroscopy for the acoustic measurement of small and irregular samples in the low frequency range. Journal of Geophysical Research: Solid Earth, 117(B6): B06203, doi: 10.1029/2011JB008808.

     

    Weger R J, Baechle G T, Masaferro J L, et al. 2004. Effects of porestructure on sonic velocity in carbonates. //74th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts SEG Technical Program Expanded Abstracts, 1774.

     

    Wei X, Wang S X, Zhao J G, et al. 2015. Laboratory study of velocity dispersion of the seismic wave in fluid-saturated sandstones. Chinese Journal of Geophysics (in Chinese), 58(9): 3380-3388, doi: 10.6038/cjg20150930. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201509030

     

    Xu S Y, Payne M A. 2009. Modeling elastic properties in carbonate rocks. The Leading Edge, 28(1): 66-74. doi: 10.1190/1.3064148

     

    Yin H J, Zhao J G, Tang G Y, et al. 2016. Numerical and experimental investigation of a low-frequency measurement technique: differential acoustic resonance spectroscopy. Journal of Geophysics and Engineering, 13(3): 342-353. doi: 10.1088/1742-2132/13/3/342

     

    Yin H J, Zhao J G, Tang G Y, et al. 2017. Pressure and fluid effect on frequency-dependent elastic moduli in fully saturated tight sandstone. Journal of Geophysical Research: Solid Earth, 122(11): 8925-8942. doi: 10.1002/2017JB014244

     

    Zhao J G, Tang G T, Deng J X, et al. 2013. Determination of rock acoustic properties at low frequency: A differential acoustical resonance spectroscopy device and its estimation technique. Geophysical Research Letters, 40(12): 2975-2982. doi: 10.1002/grl.50346

     

    Zhao J G, Wang S X, Yin H J, et al. 2015. Differential Acoustic Resonance Spectroscopy: Improved theory and application in the low frequency range. Geophysical Journal International, 202(3): 1775-1791. doi: 10.1093/gji/ggv234

     

    邓继新, 周浩, 王欢等. 2015.基于储层砂岩微观孔隙结构特征的弹性波频散响应分析.地球物理学报, 58(9): 3389-3400, doi: 10.6038/cjg20150931. http://www.geophy.cn//CN/abstract/abstract11812.shtml

     

    未晛, 王尚旭, 赵建国等. 2015.含流体砂岩地震波频散实验研究.地球物理学报, 58(9): 3380-3388, doi: 10.6038/cjg20150930. http://www.geophy.cn//CN/abstract/abstract11811.shtml

  • 加载中

(8)

(1)

计量
  • 文章访问数:  1648
  • PDF下载数:  619
  • 施引文献:  0
出版历程
收稿日期:  2018-10-16
修回日期:  2020-01-09
上线日期:  2020-02-05

目录