时频方向谱分析在海洋电磁数据处理中的应用

徐震寰, 李予国. 2019. 时频方向谱分析在海洋电磁数据处理中的应用. 地球物理学报, 62(12): 4874-4885, doi: 10.6038/cjg2019M0252
引用本文: 徐震寰, 李予国. 2019. 时频方向谱分析在海洋电磁数据处理中的应用. 地球物理学报, 62(12): 4874-4885, doi: 10.6038/cjg2019M0252
XU ZhenHuan, LI YuGuo. 2019. The application of Spectral-Direction method in marine electromagnetic data processing. Chinese Journal of Geophysics (in Chinese), 62(12): 4874-4885, doi: 10.6038/cjg2019M0252
Citation: XU ZhenHuan, LI YuGuo. 2019. The application of Spectral-Direction method in marine electromagnetic data processing. Chinese Journal of Geophysics (in Chinese), 62(12): 4874-4885, doi: 10.6038/cjg2019M0252

时频方向谱分析在海洋电磁数据处理中的应用

  • 基金项目:

    青岛海洋科学与技术国家实验室“问海计划”(2017WHZZB0201)和中国海洋大学海底科学与探测技术教育部重点实验室开放课题基金(SGPT-2019OF-09)联合资助

详细信息
    作者简介:

    徐震寰, 男, 1989年生, 博士研究生, 主要从事海洋电磁数据处理解释工作.E-mail:xzh19890104@126.com

    通讯作者: 李予国, 男, 1965年生, 教授, 主要从事电磁场数值模拟和反演方法及海洋电磁法研究工作.E-mail:yuguo@ouc.edu.cn
  • 中图分类号: P631

The application of Spectral-Direction method in marine electromagnetic data processing

More Information
  • 海底采集到的电磁数据按照其主要包含的信息及研究目的大致可分为海洋可控源电磁场(CSEM)信号、天然场源大地电磁场(MT)信号、海洋环境电磁场信号以及其他随机干扰信号.常常通过计算功率谱密度、时频分析和极化分析的方法研究海洋电磁场特征.本文介绍一种新方法——时频方向谱分析法及其在实测海洋电磁数据处理中的应用,该方法能够在一定的时间-频率尺度上有效分辨场源信号的运动方向.对于海洋CSEM数据,利用该方法可以估算发射源的运动方向,进而在发射源或采集站方位信息缺失情况下,实现海洋CSEM数据的旋转电性轴处理.对于海洋电磁数据,利用该方法可以详细分析海水运动感应电磁场的信号特征.

  • 加载中
  • 图 1 

    合成信号时间序列

    Figure 1. 

    Time series of the synthetic data

    图 2 

    合成数据PSD分析结果,信号主频为0.3 Hz

    Figure 2. 

    PSD analysis of the synthetic data and the main frequency of the signal is 0.3 Hz

    图 3 

    合成数据极化分析结果,信号极化方向为120°

    Figure 3. 

    Polarization analysis of the synthetic data and the polarization direction of the signal is 120°

    图 4 

    合成信号模拟参数(a)与时频方向谱分析结果(b)

    Figure 4. 

    The modeling parameters (a) and SD analysis (b) of the synthetic data

    图 5 

    发射源移动方向和采集站实测方位示意图

    Figure 5. 

    Schematic of transmitter′s navigation and OBEM′s orientation

    图 6 

    南海实测海底电场分量Ex(a)和Ey(b)频谱图

    Figure 6. 

    Spectrogram of the electric field components Ex (a) and Ey (b) measured at South China Sea

    图 7 

    近场源处电场水平分量ExEy的时间序列(a)及其极化分析结果(b)

    Figure 7. 

    Time-series of the electric field components Ex and Ey close to the transmitter source (a) and the polarization analysis results (b)

    图 8 

    实测海洋CSEM信号时频方向谱

    Figure 8. 

    Spectral-Direction analysis of the measured marine CSEM data

    图 9 

    发射源运动方向随时间变化曲线

    Figure 9. 

    The motion direction curves of the transmitter

    图 10 

    南黄海某电磁采集站实测水平磁场分量Hx(a)和Hy(b)的时频谱

    Figure 10. 

    Spectrogram of the horizontal magnetic components Hx (a) and Hy (b), measured at the Southern Yellow Sea

    图 11 

    南黄海某电磁采集站实测磁场时频方向谱

    Figure 11. 

    The Spectral-Direction analysis of the marine magnetic field, measured at the Southern Yellow Sea

    表 1 

    表面波分类(Reddy, 2001)

    Table 1. 

    Summary of the surface waves (Reddy, 2001)

    名称 周期 频率(Hz) 恢复力
    表面张力波 < 0.1 s >10 表面张力
    超重力波 0.1~1 s 1~10 表面张力和重力
    重力波
    (涌浪等)
    1~30 s 0.03~1 重力
    次重力波 30 s~5 min 0.003~0.03 重力和科里奥利力
    长周期波 5 min~12 h 0.00003~0.003 重力和科里奥利力
    潮波(潮汐) 12~24 h 0.00001~0.00003 重力和科里奥利力
    下载: 导出CSV

    表 2 

    时频方向谱估计海水运动方向统计表

    Table 2. 

    Statistics of ocean motion direction by SD method

    阶段 频带
    0.05~0.3 Hz 0.3~10 Hz 平均值
    平潮期
    (23:00—01:00)
    106.5°~146.4° - 125.2°
    涨潮期
    (01:00—05:00)
    - 89.5°~132.8° 115.9°
    平潮期(05:00—07:00) 54.8°~109.2° - 74.5°
    退潮期
    (07:00—11:00)
    - 94.9°~127.1° 108.6°
    平潮期
    (11:00—13:00)
    26.2°~92.1° - 51.4°
    退潮期
    (13:00—17:00)
    - 131.3°~123.6° 112.9°
    平潮期
    (17:00—19:00)
    59.5°~118.2° - 81.4°
    退潮期
    (19:00—23:00)
    - 104.5°~131.6° 112.1°
    下载: 导出CSV
  •  

    Beal H T, Weaver J T. 1970. Calculations of magnetic variations induced by internal ocean waves. Journal of Geophysical Research, 75(33):6846-6852. doi: 10.1029/JC075i033p06846

     

    Behrens J P. 2005. The detection of electrical anisotropy in 35 Ma Pacific lithosphere:Results from a marine controlled-source electromagnetic survey and implications for hydration of the upper mantle[Ph. D. thesis]. San Diego:University of California.

     

    Bhatt K M, Hördt A, Hanstein T. 2009. Analysis of seafloor marine EM data with respect to motion-induced noise.//23rd Kolloquium Electromagnetische Tiefenforschung (EMTF). Brandenburg, Germany

     

    Bhatt K M. 2011. Motion induced noise in marine electromagnetic data[Ph. D. thesis]. Braunschweig, Lower Saxony, Germany:Technical University.

     

    Chave A D, Filloux J H. 1984. Electromagnetic induction fields in the deep ocean off California:oceanic and ionospheric sources. Geophysical Journal International, 77(1):143-171. doi: 10.1111/j.1365-246X.1984.tb01929.x

     

    Chave A D, Luther D S. 1990. Low-frequency, motionally induced electromagnetic fields in the ocean:1. Theory. Journal of Geophysical Research, 95(C5):7185-7200. doi: 10.1029/JC095iC05p07185

     

    Constable S. 2006. Marine electromagnetic methods-A new tool for offshore exploration. The Leading Edge, 25(4):438-444. doi: 10.1190/1.2193225

     

    Constable S. 2010. Ten years of marine CSEM for hydrocarbon exploration. Geophysics, 75(5):75A67-75A81. http://d.old.wanfangdata.com.cn/NSTLQK/10.1190-1.3483451/

     

    Constable S. 2013. Review paper:Instrumentation for marine magnetotelluric and controlled source electromagnetic sounding. Geophysical Prospecting, 61(S1):505-532. http://cn.bing.com/academic/profile?id=ad0d7a8609f86e7b2d919dde2e8ed1c1&encoded=0&v=paper_preview&mkt=zh-cn

     

    Cox C. 1980. Electromagnetic induction in the oceans and inferences on the constitution of the earth. Geophysical Surveys, 4(1-2):137-156. doi: 10.1007/BF01452963

     

    Crews A, Futterman J. 1962. Geomagnetic micropulsations due to the motion of ocean waves. Journal of Geophysical Research, 67(1):299-306. doi: 10.1029/JZ067i001p00299

     

    Faraday M. 1832. VI. The Bakerian lecture.-Experimental researches in electricity.-Second series. Philosophical Transactions of the Royal Society of London, (122):163-194. doi: 10.1098/rstl.1832.0007

     

    Fraser D C. 1966. The magnetic fields of ocean waves. Geophysical Journal International, 11(5):507-517. doi: 10.1111/j.1365-246X.1966.tb03162.x

     

    Key K, Lockwood A. 2010. Determining the orientation of marine CSEM receivers using orthogonal Procrustes rotation analysis. Geophysics, 75(3):F67-F70. doi: 10.1190/1.3454771

     

    Larsen J C. 1973. An introduction to electromagnetic induction in the ocean. Physics of the Earth and Planetary Interiors, 7(3):389-398. doi: 10.1016/0031-9201(73)90063-0

     

    Li Y G, Duan S M. 2014. Data preprocessing of marine controlled-source electromagnetic data. Periodical of Ocean University of China (in Chinese), 44(10):106-112.

     

    Lin Z H, Li Y G. 2019. Calculations of magnetic variations induced by ocean waves. Periodical of Ocean University of China (in Chinese), 49(2):74-78. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb201902010

     

    Liu Y H, Yin C C, Weng A H, et al. 2012. Attitude effect for marine CSEM system. Chinese J. Geophys. (in Chinese), 55(8):2757-2768, doi:10.6038/j.issn.0001-5733.2012.08.027.

     

    Longuet-Higgins M S, Stern M E, Stommel H. 1954. The electrical field induced by ocean currents and waves, with applications to the method of towed electrodes.//Physical Oceanography and Meteorology, Vol.13. Cambridge and Woods Hole: Massachusetts Institute of Technology and Woods Hole Oceanographic Institution.

     

    Luo M, Pei J X, Xu Z H. 2017. Effects of uncertainties in the orientation and position of both the transmitter and receivers on marine CSEM responses in layered vertical anisotropic medium. Chinese J. Geophys. (in Chinese), 60(12):4901-4915, doi:10.6038/cjg20171229.

     

    Myer D, Constable S, Key K, et al. 2012. Marine CSEM of the Scarborough gas field, Part 1:Experimental design and data uncertainty. Geophysics, 77(4):E281-E299. doi: 10.1190/geo2011-0380.1

     

    Podney W. 1975. Electromagnetic fields generated by ocean waves. Journal of Geophysical Research, 80(21):2977-2990. doi: 10.1029/JC080i021p02977

     

    Reddy M P M. 2001. Descriptive Physical Oceanography. Netherlands:A. A. Balkema.

     

    Sanford T B. 1971. Motionally induced electric and magnetic fields in the sea. Journal of Geophysical Research, 76(15):3476-3492. doi: 10.1029/JC076i015p03476

     

    Shimizu H, Utada H. 2015. Motional magnetotellurics by long oceanic waves. Geophysical Journal International, 201(1):390-405. doi: 10.1093/gji/ggv030

     

    Shin K, Hammond J K. 2008. Fundamentals of Signal Processing for Sound and Vibration Engineers. Singapore:John Wiley & Sons, Ltd.

     

    Sugioka H, Hamano Y. 2016. Practical performance evaluation of the Wave Glider in geophysical observations.//EGU General Assembly Conference. EGU.

     

    Toh H, Satake K, Hamano Y, et al. 2011. Tsunami signals from the 2006 and 2007 Kuril earthquakes detected at a seafloor geomagnetic observatory. Journal of Geophysical Research, 116(B2):B02104, doi:10.1029/2010JB007873.

     

    Tyler R H, Mysak L A. 1995. Motionally-induced electromagnetic fields generated by idealized ocean currents. Geophysical & Astrophysical Fluid Dynamics, 80(3-4):167-204. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/03091929508228954

     

    Weaver J T. 1971. The general theory of electromagnetic induction in a conducting half-space. Geophysical Journal of the Royal Astronomical Society, 22(1):83-100. doi: 10.1111/j.1365-246X.1971.tb03584.x

     

    Welch P D. 1967. The use of fast Fourier transform for the estimation of power spectra:A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2):70-73. doi: 10.1109/TAU.1967.1161901

     

    Xu Z H, Liu Y, Li Y G. 2016. Effects of uncertainties in the position and orientation of both the transmitter and receivers on marine controlled-source electromagnetic data. Journal of Ocean University of China, 15(1):83-92. doi: 10.1007/s11802-016-2675-8

     

    Xu Z H, Li Y G, Luo M. 2018. Seabed survey and property analysis of ship's shaft-rate electromagnetic signal. Journal of Harbin Engineering University (in Chinese), 39(4):652-657. http://d.old.wanfangdata.com.cn/Periodical/hebgcdxxb201804007

     

    Yaakobi O, Zilman G, Miloh T. 2011. Detection of the electromagneticfield induced by the wake of a ship moving in a moderate sea state of finite depth. Journal of Engineering Mathematics, 70(1-3):17-27. doi: 10.1007/s10665-010-9410-z

     

    Young F B, Gerrard H, Jevons W. 1920. XIII. On electrical disturbances due to tides and waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 40(235):149-159. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232029961/

     

    李予国, 段双敏. 2014.海洋可控源电磁数据预处理方法研究.中国海洋大学学报(自然科学版), 44(10):106-112. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb201410015

     

    林智恒, 李予国. 2019.海水运动感应磁场的数值计算方法.中国海洋大学学报(自然科学版), 49(2):74-78. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb201902010

     

    刘云鹤, 殷长春, 翁爱华等. 2012.海洋可控源电磁法发射源姿态影响研究.地球物理学报, 55(8):2757-2768, doi:10.6038/j.issn.0001-5733.2012.08.027. http://www.geophy.cn//CN/abstract/abstract8845.shtml

     

    罗鸣, 裴建新, 徐震寰. 2017.层状垂直各向异性介质海洋CSEM发射源及接收站姿态和位置对电磁响应影响研究.地球物理学报, 60(12):4901-4915, doi:10.6038/cjg20171229. http://www.geophy.cn//CN/abstract/abstract14224.shtml

     

    徐震寰, 李予国, 罗鸣. 2018.船舶轴频电磁场信号的海底测量及其特性分析.哈尔滨工程大学学报, 39(4):652-657. http://d.old.wanfangdata.com.cn/Periodical/hebgcdxxb201804007

  • 加载中

(11)

(2)

计量
  • 文章访问数:  1601
  • PDF下载数:  519
  • 施引文献:  0
出版历程
收稿日期:  2018-07-02
修回日期:  2018-10-11
上线日期:  2019-12-05

目录