Propagation characteristics of mesospheric concentric gravity waves excited by a thunderstorm
-
摘要:
本文使用中国科学院国家空间科学中心——子午工程朔州观测站的全天空气辉成像数据,以及FY-2气象卫星云顶亮温数据(Black Body Temperature,TBB),气象再分析数据和地闪数据,研究了2013年8月10日(LT)发生在内蒙古地区的雷暴活动激发的中高层环状重力波(Concentric Gravity Waves,CGWs)事件.根据最小二乘法的拟合结果和色散关系理论曲线,确定了激发中高层环状重力波的强对流系统,该对流中心位于内蒙古自治区中部(108.9°E,40.47°N),重力波激发于雷暴初期,此时TBB低于220 K的深对流面积较小,随着时间的推移,该次雷暴活动越来越强,深对流面积在23:00达到最大,在23:30-24:00 LT时闪电频数最高,达到120.7 fl/min,随后深对流逐渐消散.在中高层87 km处OH(羟基)气辉层观测到的一次CGWs事件的两组波纹,分别沿水平方向传播了149.64 km和174.25 km,相应位置处的水平波长分别为12.67 km和16.75 km,周期分别为8.56 min和10.72 min,激发时间分别为19:34 LT和19:40 LT;随着水平传播距离的增加,CGWs水平波长增大.
Abstract:This work used the all-sky airglow data of the Shuozhou station from Meridian Space Weather Monitoring Project, National Space Science Center, Chinese Academy of Sciences, Black Body Temperature (TBB) data from FY-2 meteorological satellites, CG (cloud-ground) flash data, reanalysis data of NCEP (National Centers for Environmental Prediction) and ECWMF (European Centre for Medium-Range Weather Forecasts). We analyzed a concentric gravity waves (CGWs) event observed in the middle and upper atmosphere over North China on 10 August 2013 (local time), caused by a thunderstorm in the troposphere. The ray tracing simulation suggests that the concentric rings observed by all-sky airglow imager in 87 km were motivated by this convective system, of which the convective center was located in the middle of Inner Mongolia autonomous region (108.9°E, 40.47°N). At the initial stage, the small area of deep convection with TBB below 220 K excited the CGWs. The stronger convection occurred along with the system development, and deep convection area reached its maximum at 23:00 LT. During 23:30 LT to 24:00 LT, the CG lightning flash frequency reached the maximum 120.7 fl/min, and then deep convection eventually disappeared. At the middle and upper atmosphere, the excitation source was 149.64 km and 174.25 km away from the CGWs ripples in 87 km by all-sky imager, and the horizontal wavelengths were 12.67 km and 16.75 km, periods of waves were 8.56 min and 10.72 min, and the excited times are 19:34 and 19:40 LT, respectively. With the increase of horizontal propagation distance, the horizontal wave length of CGWs increased.
-
Key words:
- Thunderstorm /
- Gravity wave /
- CG flash /
- Ray tracing
-
-
-
Alexander M J, Holton J R, Durran D R. 1995. The gravity wave response above deep convection in a squall line simulation. Journal of the Atmospheric Sciences, 52(12):2212-2226, doi:10.1175/1520-0469(1995)052<2212:TGWRAD>2.0.CO; 2.
Alexander M J, May P T, Beres J H. 2004. Gravity waves generated by convection in the Darwin area during the Darwin Area Wave Experiment. Journal of Geophysical Research, 109:D20S04, doi:10.1029/2004JD004729.
Augustine J A, Howard K W. 1991. Mesoscale convective complexes over the United States during 1986 and 1987. Monthly Weather Review, 119(7):1575-1589. doi: 10.1175/1520-0493(1991)119<1575:MCCOTU>2.0.CO;2
Baker D J, Stair A T. 1988. Rocket measurements of the altitude distributions of the hydroxyl airglow. Physica Scripta, 37(4):611-622, doi:10.1088/0031-8949/37/4/021.
Bedka K M. 2011. Overshooting cloud top detections using MSG SEVIRI Infrared brightness temperatures and their relationship to severe weather over Europe. Atmospheric Research, 99(2):175-189, doi:10.1016/j.atmosres.2010.10.001.
Blanc E, Farges T, Le Pichon A, et al. 2014. Ten year observations of gravity waves from thunderstorms in western Africa. Journal of Geophysical Research, 119(11):6409-6418, doi:10.1002/2013JD020499.
Boeck W L, Vaughan O H, Blakeslee R, et al. 1992. Lightning induced brightening in the airglow layer. Geophysical Research Letters, 19(2):99-102, doi:10.1029/91GL03168.
Chen D, Chen Z Y, Lü D R. 2012. Simulation of the stratospheric gravity waves generated by the Typhoon Matsa in 2005. Science China Earth Sciences, 55(4):602-610, doi:10.1007/s11430-011-4303-1.
Chou M Y, Lin C C H, Yue J, et al. 2017. Concentric traveling ionosphere disturbances triggered by Super Typhoon Meranti (2016). Geophysical Research Letters, 44(3):1219-1226, doi:10.1002/2016GL072205.
Coble M, Papen G C, Gardner C S. 1998. Computing two-dimensional unambiguous horizontal wavenumber spectra from OH airglow images. IEEE Transactions on Geoscience and Remote Sensing, 36(2):368-382, doi:10.1109/36.662723.
Ejiri M K, Shiokawa K, Ogawa T, et al. 2003. Statistical study of short-period gravity waves in OH and OI nightglow images at two separated sites. Journal of Geophysical Research, 108(D21):4679, doi:10.1029/2002JD002795.
Fovell R, Durran D, Holton J R. 1992. Numerical simulations of convectively generated stratospheric gravity waves. Journal of the Atmospheric Sciences, 49(16):1427-1442, doi:10.1175/1520-0469(1992)049<1427:NSOCGS>2.0.CO; 2.
Fritts D C, Alexander M J. 2003. Gravity wave dynamics and effects in the middle atmosphere. Reviews of Geophysics, 41(1):1003, doi:10.1029/2001RG000106.
Fritts D C, Nastrom G D. 1992. Sources of mesoscale variability of gravity waves. Part Ⅱ:Frontal, convective, and jet stream excitation. Journal of the Atmospheric Sciences, 49(2):111-127, doi:10.1175/1520-0469(1992)049<0111:SOMVOG>2.0.CO; 2.
Hecht J H, Walterscheid R L, Hickey M P, et al. 2001. Climatology and modeling of quasi-monochromatic atmospheric gravity waves observed over Urbana Illinois. Journal of Geophysical Research:Atmospheres, 106(D6):5181-5195, doi:10.1029/2000JD900722.
Hines C O. 1960. Internal atmospheric gravity waves at ionospheric heights. Canadian Journal of Physics, 38(11):1441-1481. doi: 10.1139/p60-150
Hoffmann L, Alexander M J. 2010. Occurrence frequency of convective gravity waves during the North American thunderstorm season. Journal of Geophysical Research, 115(D20):D20111, doi:10.1029/2010JD014401.
Hong J, Yao Z G, Han Z G, et al. 2015. Numerical simulations and AIRS observations of stratospheric gravity waves induced by the Typhoon Muifa. Chinese Journal of Geophysics (in Chinese), 58(7):2283-2293, doi:10.6038/cjg20150707.
Jirak I L, Cotton W R, McAnelly R L. 2003. Satellite and radar survey of mesoscale convective system development. Monthly Weather Review, 131(10):2428-2449, doi:10.1175/1520-0493(2003)131<2428:SARSOM>2.0.CO; 2.
Lane T P, Reeder M J, Clark T L. 2001. Numerical modeling of gravity wave generation by deep tropical convection. Journal of the Atmospheric Sciences, 58(10):1249-1274, doi:10.1175/1520-0469(2001)058<1249:NMOGWG>2.0.CO; 2.
Lane T P, Sharman R D, Clark T L, et al. 2003. An investigation of turbulence generation mechanisms above deep convection. Journal of the Atmospheric Sciences, 60(10):1297-1321, doi:10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO; 2.
Larsen M F, Swartz W E, Woodman R F. 1982. Gravity-wave generation by thunderstorms observed with a vertically-pointing 430 MHz radar. Geophysical Research Letters, 9(5):571-574, doi:10.1029/GL009i005p00571.
Li Q Z, Xu J Y, Yue J, et al. 2011. Statistical characteristics of gravity wave activities observed by an OH airglow imager at Xinglong, in northern China. Annales Geophysicae, 29(8):1401-1410, doi:10.5194/angeo-29-1401-2011.
Li Q Z, Xu J Y, Yue J, et al. 2013. Investigation of a mesospheric bore event over northern China. Annales Geophysicae, 31(3):409-418, doi:10.5194/angeo-31-409-2013.
Liu X, Xu J Y, Li W Q, et al. 2009. Parallel numerical model for the simulation of three dimensional gravity wave's propagation. Chinese Journal of Space Science (in Chinese), 29(6):563-572, doi:10.11728/cjss2009.06.563.
Liu X, Yue J, Xu J Y, et al. 2017. Variations of global gravity waves derived from 14 years of SABER temperature observations. Journal of Geophysical Research:Atmospheres, 122(12):6231-6249, doi:10.1002/2017JD026604.
Maddox R A. 1980. Mesoscale convective complexes. Bulletin of the American Meteorological Society, 61(11):1374-1387. doi: 10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2
Marshall R A, Yue J, Lyons W A. 2015. Numerical simulation of an elve modulated by a gravity wave. Geophysical Research Letters, 42(14):6120-6127, doi:10.1002/2015GL064913.
Medeiros A F, Taylor M J, Takahashi H, et al. 2003. An investigation of gravity wave activity in the low-latitude upper mesosphere:Propagation direction and wind filtering. Journal of Geophysical Research, 108(D14):4411, doi:10.1029/2002jd002593.
Nakamura T, Aono T, Tsuda T, et al. 2003. Mesospheric gravity waves over a tropical convective region observed by OH airglow imaging in Indonesia. Geophysical Research Letters, 30(17):1882, doi:10.1029/2003GL017619.
Narayanan V L, Gurubaran S. 2013. Statistical characteristics of high frequency gravity waves observed by OH airglow imaging from Tirunelveli (8.7°N). Journal of Atmospheric and Solar-Terrestrial Physics, 92:43-50, doi:10.1016/j.jastp.2012.09.002.
Nastrom G D, Fritts D C. 1992. Sources of mesoscale variability of gravity waves. Part I:Topographic excitation. Journal of the Atmospheric Sciences, 49(2):101-110, doi:10.1175/1520-0469(1992)049<0101:SOMVOG>2.0.CO; 2.
Pautet P D, Taylor M J, Liu A Z, et al. 2005. Climatology of short-period gravity waves observed over northern Australia during the Darwin Area Wave Experiment (DAWEX) and their dominant source regions. Journal of Geophysical Research, 110:D03S90, doi:10.1029/2004JD004954.
Pierce A D, Coroniti S C. 1966. A mechanism for the generation of acoustic-gravity waves during thunderstorm formation. Nature, 210(5042):1209-1210, doi:10.1038/2101209a0.
Siefring C L, Morrill J S, Sentman D D, et al. 2010. Simultaneous near-infrared and visible observations of sprites and acoustic-gravity waves during the EXL98 campaign. Journal of Geophysical Research, 115(10):A00E57, doi:10.1029/2009ja014862.
Suzuki S, Shiokawa K, Otsuka Y, et al. 2007. Gravity wave momentum flux in the upper mesosphere derived from OH airglow imaging measurements. Earth, Planets & Space, 59(5):421-428, doi:10.1186/bf03352703.
Suzuki S, Vadas S L, Shiokawa K, et al. 2013. Typhoon-induced concentric airglow structures in the mesopause region. Geophysical Research Letters, 40(22):5983-5987, doi:10.1002/2013gl058087.
Swenson G R, Mende S B. 1994. OH emission and gravity waves (including a breaking wave) in all-sky imagery from Bear Lake, UT. Geophysical Research Letters, 21(20):2239-2242, doi:10.1029/94gl02112.
Tang J, Kamalabadi F, Franke S J, et al. 2005. Estimation of gravity wave momentum flux with spectroscopic imaging. IEEE Transactions on Geoscience and Remote Sensing, 43(1):103-109, doi:10.1109/TGRS.2004.836268.
Taylor M J, Hapgood M A. 1988. Identification of a thunderstorm as a source of short period gravity waves in the upper atmospheric nightglow emissions. Planetary and Space Science, 36(10):975-985, doi:10.1016/0032-0633(88)90035-9.
Vadas S L, Fritts D C. 2009. Reconstruction of the gravity wave field from convective plumes via ray tracing. Annales Geophysicae, 27(1):147-177, doi:10.5194/angeo-27-147-2009.
Wang C M, Li Q Z, Xu J Y, et al. 2014. Statistical characteristics analysis of atmospheric gravity waves with OH all-sky airglow imagers at low-latitude region of China. Chinese Journal of Geophysics (in Chinese), 57(11):3659-3667, doi:10.6038/cjg20141120.
Wang C M, Li Q Z, Xu J Y, et al. 2016. Gravity wave characteristics from multi-stations observation with OH all-sky airglow imagers over mid-latitude regions of China. Chinese Journal of Geophysics (in Chinese), 59(5):1566-1577, doi:10.6038/cjg20160502.
Wrasse C M, Nakamura T, Tsuda T, et al. 2006. Reverse ray tracing of the mesospheric gravity waves observed at 23°S (Brazil) and 7°S (Indonesia) in airglow imagers. Journal of Atmospheric and Solar-Terrestrial Physics, 68(2):163-181, doi:10.1016/j.jastp.2005.10.012.
Xu J Y, Smith A K, Jiang G Y, et al. 2010. Strong longitudinal variations in the OH nightglow. Geophysical Research Letters, 37:L21801, doi:10.1029/2010GL043972.
Xu J Y, Li Q Z, Yue J, et al. 2015. Concentric gravity waves over northern China observed by an airglow imager network and satellites. Journal of Geophysical Research, 120(21):11058-11078, doi:10.1002/2015JD023786.
Xu X, Wang Y, Xue M. 2012. Momentum flux and flux divergence of gravity waves in directional shear flows over three-dimensional mountains. Journal of the Atmospheric Sciences, 69(12):3733-3744, doi:10.1175/jas-d-12-044.1.
Yao Z G, Zhao Z L, Han Z G. 2015. Stratospheric gravity waves during summer over East Asia derived from AIRS observations. Chinese Journal of Geophysics (in Chinese), 58(4):1121-1134, doi:10.6038/cjg20150403.
Yue J, Vadas S L, She C Y, et al. 2009. Concentric gravity waves in the mesosphere generated by deep convective plumes in the lower atmosphere near Fort Collins, Colorado. Journal of Geophysical Research:Atmospheres, 114(D6):D06104, doi:10.1029/2008jd011244.
Yue J, Hoffmann L, Alexander M J. 2013. Simultaneous observations of convective gravity waves from a ground-based airglow imager and the AIRS satellite experiment. Journal of Geophysical Research:Atmospheres, 118(8):3178-3191, doi:10.1002/jgrd.50341.
洪军, 姚志刚, 韩志刚等. 2015.台风"梅花"诱发平流层重力波的数值模拟与AIRS观测.地球物理学报, 58(7):2283-2293, doi:10.6038/cjg20150707. http://www.geophy.cn//CN/abstract/abstract11649.shtml
刘晓, 徐寄遥, 李文强等. 2009.模拟三维重力波传播过程的并行数值模式.空间科学学报, 29(6):563-572, doi:10.11728/cjss2009.06.563.
王翠梅, 李钦增, 徐寄遥等. 2014.基于OH全天空气辉成像仪观测的中国低纬地区的重力波传播统计特征.地球物理学报, 57(11):3659-3667, doi:10.6038/cjg20141120. http://www.geophy.cn//CN/abstract/abstract10963.shtml
王翠梅, 李钦增, 徐寄遥等. 2016.基于多台站OH全天空气辉成像仪观测的中国中纬地区重力波传播特性.地球物理学报, 59(5):1566-1577, doi:10.6038/cjg20160502. http://www.geophy.cn//CN/abstract/abstract12766.shtml
姚志刚, 赵增亮, 韩志刚. 2015. AIRS观测的东亚夏季平流层重力波特征.地球物理学报, 58(4):1121-1134, doi:10.6038/cjg20150403. http://www.geophy.cn//CN/abstract/abstract11378.shtml
-