雷暴激发的环状重力波在中高层大气中的传播特征

温颖, 张其林, 徐寄遥, 李钦增, 郜海阳. 2019. 雷暴激发的环状重力波在中高层大气中的传播特征. 地球物理学报, 62(4): 1218-1229, doi: 10.6038/cjg2019M0186
引用本文: 温颖, 张其林, 徐寄遥, 李钦增, 郜海阳. 2019. 雷暴激发的环状重力波在中高层大气中的传播特征. 地球物理学报, 62(4): 1218-1229, doi: 10.6038/cjg2019M0186
WEN Ying, ZHANG QiLin, XU JiYao, LI QinZeng, GAO HaiYang. 2019. Propagation characteristics of mesospheric concentric gravity waves excited by a thunderstorm. Chinese Journal of Geophysics (in Chinese), 62(4): 1218-1229, doi: 10.6038/cjg2019M0186
Citation: WEN Ying, ZHANG QiLin, XU JiYao, LI QinZeng, GAO HaiYang. 2019. Propagation characteristics of mesospheric concentric gravity waves excited by a thunderstorm. Chinese Journal of Geophysics (in Chinese), 62(4): 1218-1229, doi: 10.6038/cjg2019M0186

雷暴激发的环状重力波在中高层大气中的传播特征

  • 基金项目:

    国家重点研发计划资助项目(2017YFC1501505)和国家自然科学基金面上项目(41775006,41575004)联合资助

详细信息
    作者简介:

    温颖, 女, 1989年生, 在读博士研究生, 主要研究雷暴气象学.E-mail:when1013@163.com

  • 中图分类号: P401

Propagation characteristics of mesospheric concentric gravity waves excited by a thunderstorm

  • 本文使用中国科学院国家空间科学中心——子午工程朔州观测站的全天空气辉成像数据,以及FY-2气象卫星云顶亮温数据(Black Body Temperature,TBB),气象再分析数据和地闪数据,研究了2013年8月10日(LT)发生在内蒙古地区的雷暴活动激发的中高层环状重力波(Concentric Gravity Waves,CGWs)事件.根据最小二乘法的拟合结果和色散关系理论曲线,确定了激发中高层环状重力波的强对流系统,该对流中心位于内蒙古自治区中部(108.9°E,40.47°N),重力波激发于雷暴初期,此时TBB低于220 K的深对流面积较小,随着时间的推移,该次雷暴活动越来越强,深对流面积在23:00达到最大,在23:30-24:00 LT时闪电频数最高,达到120.7 fl/min,随后深对流逐渐消散.在中高层87 km处OH(羟基)气辉层观测到的一次CGWs事件的两组波纹,分别沿水平方向传播了149.64 km和174.25 km,相应位置处的水平波长分别为12.67 km和16.75 km,周期分别为8.56 min和10.72 min,激发时间分别为19:34 LT和19:40 LT;随着水平传播距离的增加,CGWs水平波长增大.

  • 加载中
  • 图 1 

    华北地区全天空气辉观测网位置示意图

    Figure 1. 

    Sketch showing network of all-sky airglow observations in North China

    图 2 

    全天空气辉原始数据(2013年8月10日22 : 10 : 26—22 : 11 : 30 LT)处理示意图

    Figure 2. 

    Processing scheme of all-sky airglow raw data (22 : 10 : 26—22 : 11 : 30 LT on 10 August 2013)

    图 3 

    2013年8月10日20 : 00的500 hPa位势高度场与水平风场(朔州站位置:红色三角)

    Figure 3. 

    Geopotential height fields and horizontal wind fields of 500 hPa at 20 : 00 LT on 10 August 2013. Red triangle is Shuozhou station

    图 4 

    对流系统云顶亮温(TBB)与地闪频次随时间的变化关系

    Figure 4. 

    The convective system Black Body Temperature (TBB) and CG flash varying with time

    图 5 

    FY-2系列卫星TBB(阴影区)、地闪位置(黑色十字)与朔州站位置(红色三角)

    Figure 5. 

    The distribution of FY-2 TBB (shaded areas) and CG flash location (black cross). Red triangle is Shuozhou station

    图 6 

    不同等压面高度上,对流系统垂直方向上的纬向风(左,西风为正)和经向风(右,南风为正)

    Figure 6. 

    Zonal wind (left, west wind is positive) and meridional wind (right, south wind is positive) at different constant-pressure altitudes above the convective system

    图 7 

    环状重力波A与B的位置示意图

    Figure 7. 

    Locations of CGWs A and B

    图 9 

    波形B的位置与波长(同图 8)

    Figure 9. 

    Same as Fig. 8 but for waveform B

    图 8 

    波形A的位置与波长(圆圈为波峰和波谷位置)

    Figure 8. 

    Location and wavelength of waveform A. Circles are locations of wave crest and valley

    图 10 

    22 : 05 LT的全天空气辉重力波波形(明亮处对应波峰位置,红色圆点表示)及拟合波形(绿色和蓝色圆环)和圆心(绿色和蓝色圆点)

    Figure 10. 

    The all-sky CGWs waveform (light parts, shown as red dots, are wave crest), the fitted waveform (green and blue circles) and center of a circle (green and blue dots) at 22 : 05 LT

    图 11 

    全天空OH重力波周期随水平距离的变化关系

    Figure 11. 

    Relationship of all-sky OH CGWs wave period and horizontal distance

    图 12 

    全天空OH重力波不同传播时间的水平波长与水平距离的变化关系

    Figure 12. 

    Relationship of all-sky OH CGWs horizontal wavelength and horizontal distance with different propagation period

  •  

    Alexander M J, Holton J R, Durran D R. 1995. The gravity wave response above deep convection in a squall line simulation. Journal of the Atmospheric Sciences, 52(12):2212-2226, doi:10.1175/1520-0469(1995)052<2212:TGWRAD>2.0.CO; 2.

     

    Alexander M J, May P T, Beres J H. 2004. Gravity waves generated by convection in the Darwin area during the Darwin Area Wave Experiment. Journal of Geophysical Research, 109:D20S04, doi:10.1029/2004JD004729.

     

    Augustine J A, Howard K W. 1991. Mesoscale convective complexes over the United States during 1986 and 1987. Monthly Weather Review, 119(7):1575-1589. doi: 10.1175/1520-0493(1991)119<1575:MCCOTU>2.0.CO;2

     

    Baker D J, Stair A T. 1988. Rocket measurements of the altitude distributions of the hydroxyl airglow. Physica Scripta, 37(4):611-622, doi:10.1088/0031-8949/37/4/021.

     

    Bedka K M. 2011. Overshooting cloud top detections using MSG SEVIRI Infrared brightness temperatures and their relationship to severe weather over Europe. Atmospheric Research, 99(2):175-189, doi:10.1016/j.atmosres.2010.10.001.

     

    Blanc E, Farges T, Le Pichon A, et al. 2014. Ten year observations of gravity waves from thunderstorms in western Africa. Journal of Geophysical Research, 119(11):6409-6418, doi:10.1002/2013JD020499.

     

    Boeck W L, Vaughan O H, Blakeslee R, et al. 1992. Lightning induced brightening in the airglow layer. Geophysical Research Letters, 19(2):99-102, doi:10.1029/91GL03168.

     

    Chen D, Chen Z Y, Lü D R. 2012. Simulation of the stratospheric gravity waves generated by the Typhoon Matsa in 2005. Science China Earth Sciences, 55(4):602-610, doi:10.1007/s11430-011-4303-1.

     

    Chou M Y, Lin C C H, Yue J, et al. 2017. Concentric traveling ionosphere disturbances triggered by Super Typhoon Meranti (2016). Geophysical Research Letters, 44(3):1219-1226, doi:10.1002/2016GL072205.

     

    Coble M, Papen G C, Gardner C S. 1998. Computing two-dimensional unambiguous horizontal wavenumber spectra from OH airglow images. IEEE Transactions on Geoscience and Remote Sensing, 36(2):368-382, doi:10.1109/36.662723.

     

    Ejiri M K, Shiokawa K, Ogawa T, et al. 2003. Statistical study of short-period gravity waves in OH and OI nightglow images at two separated sites. Journal of Geophysical Research, 108(D21):4679, doi:10.1029/2002JD002795.

     

    Fovell R, Durran D, Holton J R. 1992. Numerical simulations of convectively generated stratospheric gravity waves. Journal of the Atmospheric Sciences, 49(16):1427-1442, doi:10.1175/1520-0469(1992)049<1427:NSOCGS>2.0.CO; 2.

     

    Fritts D C, Alexander M J. 2003. Gravity wave dynamics and effects in the middle atmosphere. Reviews of Geophysics, 41(1):1003, doi:10.1029/2001RG000106.

     

    Fritts D C, Nastrom G D. 1992. Sources of mesoscale variability of gravity waves. Part Ⅱ:Frontal, convective, and jet stream excitation. Journal of the Atmospheric Sciences, 49(2):111-127, doi:10.1175/1520-0469(1992)049<0111:SOMVOG>2.0.CO; 2.

     

    Hecht J H, Walterscheid R L, Hickey M P, et al. 2001. Climatology and modeling of quasi-monochromatic atmospheric gravity waves observed over Urbana Illinois. Journal of Geophysical Research:Atmospheres, 106(D6):5181-5195, doi:10.1029/2000JD900722.

     

    Hines C O. 1960. Internal atmospheric gravity waves at ionospheric heights. Canadian Journal of Physics, 38(11):1441-1481. doi: 10.1139/p60-150

     

    Hoffmann L, Alexander M J. 2010. Occurrence frequency of convective gravity waves during the North American thunderstorm season. Journal of Geophysical Research, 115(D20):D20111, doi:10.1029/2010JD014401.

     

    Hong J, Yao Z G, Han Z G, et al. 2015. Numerical simulations and AIRS observations of stratospheric gravity waves induced by the Typhoon Muifa. Chinese Journal of Geophysics (in Chinese), 58(7):2283-2293, doi:10.6038/cjg20150707.

     

    Jirak I L, Cotton W R, McAnelly R L. 2003. Satellite and radar survey of mesoscale convective system development. Monthly Weather Review, 131(10):2428-2449, doi:10.1175/1520-0493(2003)131<2428:SARSOM>2.0.CO; 2.

     

    Lane T P, Reeder M J, Clark T L. 2001. Numerical modeling of gravity wave generation by deep tropical convection. Journal of the Atmospheric Sciences, 58(10):1249-1274, doi:10.1175/1520-0469(2001)058<1249:NMOGWG>2.0.CO; 2.

     

    Lane T P, Sharman R D, Clark T L, et al. 2003. An investigation of turbulence generation mechanisms above deep convection. Journal of the Atmospheric Sciences, 60(10):1297-1321, doi:10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO; 2.

     

    Larsen M F, Swartz W E, Woodman R F. 1982. Gravity-wave generation by thunderstorms observed with a vertically-pointing 430 MHz radar. Geophysical Research Letters, 9(5):571-574, doi:10.1029/GL009i005p00571.

     

    Li Q Z, Xu J Y, Yue J, et al. 2011. Statistical characteristics of gravity wave activities observed by an OH airglow imager at Xinglong, in northern China. Annales Geophysicae, 29(8):1401-1410, doi:10.5194/angeo-29-1401-2011.

     

    Li Q Z, Xu J Y, Yue J, et al. 2013. Investigation of a mesospheric bore event over northern China. Annales Geophysicae, 31(3):409-418, doi:10.5194/angeo-31-409-2013.

     

    Liu X, Xu J Y, Li W Q, et al. 2009. Parallel numerical model for the simulation of three dimensional gravity wave's propagation. Chinese Journal of Space Science (in Chinese), 29(6):563-572, doi:10.11728/cjss2009.06.563.

     

    Liu X, Yue J, Xu J Y, et al. 2017. Variations of global gravity waves derived from 14 years of SABER temperature observations. Journal of Geophysical Research:Atmospheres, 122(12):6231-6249, doi:10.1002/2017JD026604.

     

    Maddox R A. 1980. Mesoscale convective complexes. Bulletin of the American Meteorological Society, 61(11):1374-1387. doi: 10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2

     

    Marshall R A, Yue J, Lyons W A. 2015. Numerical simulation of an elve modulated by a gravity wave. Geophysical Research Letters, 42(14):6120-6127, doi:10.1002/2015GL064913.

     

    Medeiros A F, Taylor M J, Takahashi H, et al. 2003. An investigation of gravity wave activity in the low-latitude upper mesosphere:Propagation direction and wind filtering. Journal of Geophysical Research, 108(D14):4411, doi:10.1029/2002jd002593.

     

    Nakamura T, Aono T, Tsuda T, et al. 2003. Mesospheric gravity waves over a tropical convective region observed by OH airglow imaging in Indonesia. Geophysical Research Letters, 30(17):1882, doi:10.1029/2003GL017619.

     

    Narayanan V L, Gurubaran S. 2013. Statistical characteristics of high frequency gravity waves observed by OH airglow imaging from Tirunelveli (8.7°N). Journal of Atmospheric and Solar-Terrestrial Physics, 92:43-50, doi:10.1016/j.jastp.2012.09.002.

     

    Nastrom G D, Fritts D C. 1992. Sources of mesoscale variability of gravity waves. Part I:Topographic excitation. Journal of the Atmospheric Sciences, 49(2):101-110, doi:10.1175/1520-0469(1992)049<0101:SOMVOG>2.0.CO; 2.

     

    Pautet P D, Taylor M J, Liu A Z, et al. 2005. Climatology of short-period gravity waves observed over northern Australia during the Darwin Area Wave Experiment (DAWEX) and their dominant source regions. Journal of Geophysical Research, 110:D03S90, doi:10.1029/2004JD004954.

     

    Pierce A D, Coroniti S C. 1966. A mechanism for the generation of acoustic-gravity waves during thunderstorm formation. Nature, 210(5042):1209-1210, doi:10.1038/2101209a0.

     

    Siefring C L, Morrill J S, Sentman D D, et al. 2010. Simultaneous near-infrared and visible observations of sprites and acoustic-gravity waves during the EXL98 campaign. Journal of Geophysical Research, 115(10):A00E57, doi:10.1029/2009ja014862.

     

    Suzuki S, Shiokawa K, Otsuka Y, et al. 2007. Gravity wave momentum flux in the upper mesosphere derived from OH airglow imaging measurements. Earth, Planets & Space, 59(5):421-428, doi:10.1186/bf03352703.

     

    Suzuki S, Vadas S L, Shiokawa K, et al. 2013. Typhoon-induced concentric airglow structures in the mesopause region. Geophysical Research Letters, 40(22):5983-5987, doi:10.1002/2013gl058087.

     

    Swenson G R, Mende S B. 1994. OH emission and gravity waves (including a breaking wave) in all-sky imagery from Bear Lake, UT. Geophysical Research Letters, 21(20):2239-2242, doi:10.1029/94gl02112.

     

    Tang J, Kamalabadi F, Franke S J, et al. 2005. Estimation of gravity wave momentum flux with spectroscopic imaging. IEEE Transactions on Geoscience and Remote Sensing, 43(1):103-109, doi:10.1109/TGRS.2004.836268.

     

    Taylor M J, Hapgood M A. 1988. Identification of a thunderstorm as a source of short period gravity waves in the upper atmospheric nightglow emissions. Planetary and Space Science, 36(10):975-985, doi:10.1016/0032-0633(88)90035-9.

     

    Vadas S L, Fritts D C. 2009. Reconstruction of the gravity wave field from convective plumes via ray tracing. Annales Geophysicae, 27(1):147-177, doi:10.5194/angeo-27-147-2009.

     

    Wang C M, Li Q Z, Xu J Y, et al. 2014. Statistical characteristics analysis of atmospheric gravity waves with OH all-sky airglow imagers at low-latitude region of China. Chinese Journal of Geophysics (in Chinese), 57(11):3659-3667, doi:10.6038/cjg20141120.

     

    Wang C M, Li Q Z, Xu J Y, et al. 2016. Gravity wave characteristics from multi-stations observation with OH all-sky airglow imagers over mid-latitude regions of China. Chinese Journal of Geophysics (in Chinese), 59(5):1566-1577, doi:10.6038/cjg20160502.

     

    Wrasse C M, Nakamura T, Tsuda T, et al. 2006. Reverse ray tracing of the mesospheric gravity waves observed at 23°S (Brazil) and 7°S (Indonesia) in airglow imagers. Journal of Atmospheric and Solar-Terrestrial Physics, 68(2):163-181, doi:10.1016/j.jastp.2005.10.012.

     

    Xu J Y, Smith A K, Jiang G Y, et al. 2010. Strong longitudinal variations in the OH nightglow. Geophysical Research Letters, 37:L21801, doi:10.1029/2010GL043972.

     

    Xu J Y, Li Q Z, Yue J, et al. 2015. Concentric gravity waves over northern China observed by an airglow imager network and satellites. Journal of Geophysical Research, 120(21):11058-11078, doi:10.1002/2015JD023786.

     

    Xu X, Wang Y, Xue M. 2012. Momentum flux and flux divergence of gravity waves in directional shear flows over three-dimensional mountains. Journal of the Atmospheric Sciences, 69(12):3733-3744, doi:10.1175/jas-d-12-044.1.

     

    Yao Z G, Zhao Z L, Han Z G. 2015. Stratospheric gravity waves during summer over East Asia derived from AIRS observations. Chinese Journal of Geophysics (in Chinese), 58(4):1121-1134, doi:10.6038/cjg20150403.

     

    Yue J, Vadas S L, She C Y, et al. 2009. Concentric gravity waves in the mesosphere generated by deep convective plumes in the lower atmosphere near Fort Collins, Colorado. Journal of Geophysical Research:Atmospheres, 114(D6):D06104, doi:10.1029/2008jd011244.

     

    Yue J, Hoffmann L, Alexander M J. 2013. Simultaneous observations of convective gravity waves from a ground-based airglow imager and the AIRS satellite experiment. Journal of Geophysical Research:Atmospheres, 118(8):3178-3191, doi:10.1002/jgrd.50341.

     

    洪军, 姚志刚, 韩志刚等. 2015.台风"梅花"诱发平流层重力波的数值模拟与AIRS观测.地球物理学报, 58(7):2283-2293, doi:10.6038/cjg20150707. http://www.geophy.cn//CN/abstract/abstract11649.shtml

     

    刘晓, 徐寄遥, 李文强等. 2009.模拟三维重力波传播过程的并行数值模式.空间科学学报, 29(6):563-572, doi:10.11728/cjss2009.06.563.

     

    王翠梅, 李钦增, 徐寄遥等. 2014.基于OH全天空气辉成像仪观测的中国低纬地区的重力波传播统计特征.地球物理学报, 57(11):3659-3667, doi:10.6038/cjg20141120. http://www.geophy.cn//CN/abstract/abstract10963.shtml

     

    王翠梅, 李钦增, 徐寄遥等. 2016.基于多台站OH全天空气辉成像仪观测的中国中纬地区重力波传播特性.地球物理学报, 59(5):1566-1577, doi:10.6038/cjg20160502. http://www.geophy.cn//CN/abstract/abstract12766.shtml

     

    姚志刚, 赵增亮, 韩志刚. 2015. AIRS观测的东亚夏季平流层重力波特征.地球物理学报, 58(4):1121-1134, doi:10.6038/cjg20150403. http://www.geophy.cn//CN/abstract/abstract11378.shtml

  • 加载中

(12)

计量
  • 文章访问数:  1283
  • PDF下载数:  346
  • 施引文献:  0
出版历程
收稿日期:  2018-03-23
修回日期:  2018-06-12
上线日期:  2019-04-05

目录