单极源钻铤波传播机制的实验研究

王军, 李红一, 关威, 胡恒山, 杨玉峰. 2019. 单极源钻铤波传播机制的实验研究. 地球物理学报, 62(4): 1541-1553, doi: 10.6038/cjg2019M0042
引用本文: 王军, 李红一, 关威, 胡恒山, 杨玉峰. 2019. 单极源钻铤波传播机制的实验研究. 地球物理学报, 62(4): 1541-1553, doi: 10.6038/cjg2019M0042
WANG Jun, LI HongYi, GUAN Wei, HU HengShan, YANG YuFeng. 2019. Experimental studies on the mechanism of monopole acoustic collar wave. Chinese Journal of Geophysics (in Chinese), 62(4): 1541-1553, doi: 10.6038/cjg2019M0042
Citation: WANG Jun, LI HongYi, GUAN Wei, HU HengShan, YANG YuFeng. 2019. Experimental studies on the mechanism of monopole acoustic collar wave. Chinese Journal of Geophysics (in Chinese), 62(4): 1541-1553, doi: 10.6038/cjg2019M0042

单极源钻铤波传播机制的实验研究

  • 基金项目:

    国家自然科学基金(41674121,11734017,41574112),国家科技重大专项(2017ZX05019006-006)及黑龙江省博士后基金(LHB-Q17060)资助

详细信息
    作者简介:

    王军, 副教授, 主要从事岩石物理和声波/动电测井实验研究.E-mail:wangjun2012@hit.edu.cn

    通讯作者: 关威, 副教授, 博导, 主要从事波动理论及声波/动电测井模拟研究.E-mail:guanw@hit.edu.cn
  • 中图分类号: P631

Experimental studies on the mechanism of monopole acoustic collar wave

More Information
  • 为了研究随钻声波测井中单极源钻铤波的传播特性,本文在水池中进行了缩小尺寸的随钻声波测井实验.首先建立了实验室内高分辨的数据采集系统(24位分辨率/1.25 MS/s采样率)和高精度三维运动控制系统(最小移动步长0.5 mm),并通过测量声源和接收换能器之间直达流体声波信号,验证了声源/接收探头和实验测量系统的有效性.之后对4种实验模型下单极源激发钻铤波的传播规律进行了实验分析,分别在钻铤内部和钻铤外流体中记录了钻铤波信号,重点分析了不同情况下钻铤内部直达钻铤波和钻铤外部泄漏钻铤波的幅值差异性及产生原因,讨论了泄漏钻铤波沿着井轴方向和直径方向的衰减规律.实验结果表明:钻铤波在声源和钻铤分离情况下依旧可以激发很强的钻铤波,但当钻铤被截断后两部分钻铤波同时消失,在截断位置转化成流体声波波群继续向前传播.此外,通过定量分析两部分钻铤波的幅值特性发现,泄漏钻铤波的幅值约为直达钻铤波幅值的1/4,两者处于同一量级,因此,泄漏钻铤波对测量纵横波的干扰是不可忽略的,进而本文提出一种随钻声波测井接收器的布置方法,以有效削弱测井全波中直达钻铤波和泄漏钻铤波信号的幅度.本文实验结果对认识单极源钻铤波的激发和传播机制具有重要意义.

  • 加载中
  • 图 1 

    随钻测井设备:声源探头(a);极化方式(b); 接收探头(c);极化方式(d)

    Figure 1. 

    The detector of LWD: the source (a), the polarization of source (b), the receivers (c), the polarization of receiver (d)

    图 2 

    随钻声波测井实验测量系统

    Figure 2. 

    The test system for the acoustic LWD

    图 3 

    水池中直达声场实验模型

    Figure 3. 

    The experimental model in liquid

    图 4 

    水中声波信号的时域波形

    Figure 4. 

    The time domain acoustic waveforms in liquid

    图 5 

    随钻声波测井实验模型1

    Figure 5. 

    The acoustic LWD model 1

    图 6 

    直达钻铤波的时域波形

    Figure 6. 

    The time domain waveforms of the direct collar wave

    图 7 

    随钻声波测井实验模型2

    Figure 7. 

    The acoustic LWD model 2

    图 8 

    不同接收距离处泄漏钻铤波的时域波形

    Figure 8. 

    The time domain waveforms of leaked collar wave with different distances

    图 9 

    泄漏钻铤波沿着轴向的衰减规律

    Figure 9. 

    The attenuation of leaked collar wave along axial direction

    图 10 

    泄漏钻铤波沿着径向的衰减规律

    Figure 10. 

    The attenuation of leaked collar wave along radial direction

    图 11 

    泄漏钻铤波沿着轴向和径向衰减规律比较

    Figure 11. 

    The comparison of leaked collar wave attenuation along two directions

    图 12 

    分离模型随钻声波测井实验

    Figure 12. 

    The separated model for acoustic LWD

    图 13 

    分离模型中随钻声波测井时域波形

    Figure 13. 

    The time domain waveforms of LWD in separated model

    图 14 

    不同模型直达钻铤波和泄漏钻铤波时域波形比较

    Figure 14. 

    The comparison of direct and leaked collar waves in different models

    图 15 

    截断模型下随钻声波测井实验

    Figure 15. 

    The cut off model for acoustic LWD

    图 16 

    截断模型下钻铤内外记录时域波形比较

    Figure 16. 

    The comparison of acoustic waves in cut off model

    图 17 

    截断模型下钻铤内外表面记录时域波形

    Figure 17. 

    The time domain waveforms of collar waves received in and out of the collar in cut off model

    图 18 

    直达钻铤波(a)和泄漏钻铤波(b)幅值比较

    Figure 18. 

    The amplitude comparison of (a) the direct collar wave and (b) the leaked collar wave

  •  

    Cui Z W. 2004. Theoretical and numerical study of modified Biot's models, acoustoelectric well logging and acoustic logging while drilling excited by multipole acoustic sources[Ph. D. thesis] (in Chinese). Changchun: Jilin University.

     

    Guan W, Hu H S, Zheng X B. 2013. Theoretical simulation of the multipole seismoelectric logging while drilling. Geophysical Journal International, 195(2):1239-1250. doi: 10.1093/gji/ggt294

     

    He X, Hu H S, Guan W. 2010. Fast and slow flexural waves in a deviated borehole in homogeneous and layered anisotropic formations. Geophysical Journal International, 181(1):417-426. doi: 10.1111/gji.2010.181.issue-1

     

    He X, Hu H S, Wang X M. 2013. Finite difference modelling of dipole acoustic logs in a poroelastic formation with anisotropic permeability. Geophysical Journal International, 192(1):359-374. doi: 10.1093/gji/ggs024

     

    Sinha B K, Şek E, Asvadurov S. 2009. Influence of a pipe tool on borehole modes. Geophysics, 74(3):E111-E123. doi: 10.1190/1.3085644

     

    Song R L, Liu J X, Hou C H, et al. 2012. Numerical simulation of Sector Bond log and improved cement bond image. Geophysics, 77(4):D95-D104. doi: 10.1190/geo2011-0273.1

     

    Su Y D, Zhuang C X, Tang X M. 2011. LWD acoustic color mode wave attenuation character research and isolator design. Chinese J. Geophys. (in Chinese), 54(9):2419-2428, doi:10.3969/j.issn.0001-5733.2011.09.026.

     

    Su Y D, Tang X M, Xu S, et al. 2015. Acoustic isolation of a monopole logging while drilling tool by combining natural stopbands of pipe extensional waves. Geophysical Journal International, 202(1):439-445. doi: 10.1093/gji/ggv150

     

    Tang X M, Wang T, Patterson D. 2002. Multipole acoustic logging-while-drilling.//72nd Annual International Meeting. Salt Lake City, Utah: SEG, 364-367.

     

    Tang X M, Dubinsky V, Patterson D J. 2006. Development of a low-frequency LWD quadrupole shear-wave technology to improve quality of formation shear velocity measurement.//Society of Petroleum Engineers Annual Technical Conference and Technical Exhibition. San Antonio, Texas, USA: SPE.

     

    Wang J, Zhu Z Y, Zheng X B. 2016. Experimental analysis on acoustic LWD with multipole source. Chinese J. Geophys. (in Chinese), 59(5):1909-1919, doi:10.6038/cjg20160533.

     

    Wang J, Hu H S, Guan W, et al. 2017. Electrokinetic measurements of formation velocities with wireline seismoelectric logging and seismoelectric logging while drilling. Chinese J. Geophys. (in Chinese), 60(2):862-872, doi:10.6038/cjg20170236.

     

    Wang H, Fehler M, Tao G, et al. 2016. Investigation of collar properties on data-acquisition scheme for acoustic logging-while-drilling. Geophysics, 81(6):D611-D624. doi: 10.1190/geo2016-0016.1

     

    Wang H, Fehler M, Miller D. 2017. Reliability of velocity measurements made by monopole acoustic logging-while-drilling tools in fast formations. Geophysics, 82(4):D225-D233. doi: 10.1190/geo2016-0387.1

     

    Wang H, Fehler M. 2018. The wavefield of acoustic logging in a cased-hole with a single casing-part Ⅰ:a monopole tool. Geophysical Journal International, 212(1):612-626. doi: 10.1093/gji/ggx437

     

    Wang R J, Qiao W X, Ju X D. 2012. Numerical study of formation anisotropy evaluation using cross dipole acoustic LWD. Chinese J. Geophys. (in Chinese), 55(11):3870-3882, doi:10.6038/j.issn.0001-5733.2012.11.035.

     

    Wang X M, He X, Zhang X M. 2016. Generalized collar waves in acoustic logging while drilling. Chinese Physics B, 25(12):124316. doi: 10.1088/1674-1056/25/12/124316

     

    Xu F L, Hu H S. 2017. Inversion of the shear velocity of the cement in cased borehole through ultrasonic flexural waves. Geophysics, 82(2):D57-D68. doi: 10.1190/geo2016-0314.1

     

    Yang Y F, Guan W, Cui N G, et al. 2016. FDTD simulation and analysis of the collar wave propagation in acoustic logging while drilling. Chinese J. Geophys. (in Chinese), 59(1):368-380, doi:10.6038/cjg20160131.

     

    Yang Y F, Guan W, Hu H S, et al. 2017. Numerical study of the collar wave characteristics and the effects of grooves in acoustic logging while drilling. Geophysical Journal International, 209(2):749-761. doi: 10.1093/gji/ggx044

     

    Zhang B X, Dong H F, Wang K X. 1994. Multipole sources in a fluid-filled borehole surrounded by a transversely isotropic elastic solid. The Journal of the Acoustical Society of America, 96(4):2546-2555. doi: 10.1121/1.411383

     

    Zheng X B, Hu H S, Guan W, et al. 2014. Theoretical simulation of the electric field induced by acoustic waves during the seismoelectric logging while drilling. Chinese J. Geophys. (in Chinese), 57(1):320-330, doi:10.6038/cjg20140128.

     

    Zheng X B, Hu H S. 2017. A theoretical investigation of acoustic monopole logging-while-drilling individual waves with emphasis on the collar wave and its dependence on formation. Geophysics, 82(1):D1-D11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9db0d2fda7cee0da811e252c513d3b07

     

    Zhu Z Y, Toksöz M N, Rao R, et al. 2008. Experimental studies of monopole, dipole, and quadrupole acoustic logging while drilling (LWD) with scaled borehole models. Geophysics, 73(4):E133-E143. doi: 10.1190/1.2919827

     

    Zhu Z Y, Wang J, Toksöz M N. 2012. Multipole seismoelectric logging while drilling (LWD) for acoustic velocity measurements.//74th EAGE Conference and Exhibition. SPE, EAGE.

     

    崔志文. 2004.多孔介质声学模型与多极源声电效应测井和多极随钻声测井的理论与数值研究[博士论文].长春: 吉林大学.

     

    苏远大, 庄春喜, 唐晓明. 2011.随钻声波测井钻铤模式波衰减规律研究与隔声体设计.地球物理学报, 54(9):2419-2428, doi:10.3969/j.issn.0001-5733.2011.09.026. http://www.geophy.cn//CN/abstract/abstract8179.shtml

     

    王军, Zhu Z Y, 郑晓波. 2016.多极源随钻声波测井实验分析.地球物理学报, 59(5):1909-1919, doi:10.6038/cjg20160533. http://www.geophy.cn//CN/abstract/abstract12797.shtml

     

    王军, 胡恒山, 关威等. 2017.地层波速的电缆和随钻动电测井实验研究.地球物理学报, 60(2):862-872, doi:10.6038/cjg20170236. http://www.geophy.cn//CN/abstract/abstract13477.shtml

     

    王瑞甲, 乔文孝, 鞠晓东. 2012.利用随钻正交偶极子声波测井评价地层各向异性的数值研究.地球物理学报, 55(11):3870-3882, doi:10.6038/j.issn.0001-5733.2012.11.035. http://www.geophy.cn//CN/abstract/abstract9080.shtml

     

    杨玉峰, 关威, 崔乃刚等. 2016.随钻声波测井FDTD模拟及钻铤波传播特性研究.地球物理学报, 59(1):368-380, doi:10.6038/cjg20160131. http://www.geophy.cn//CN/abstract/abstract12115.shtml

     

    郑晓波, 胡恒山, 关威等. 2014.随钻动电测井中声诱导电场的理论模拟.地球物理学报, 57(1):320-330, doi:10.6038/cjg20140128. http://www.geophy.cn//CN/abstract/abstract10070.shtml

  • 加载中

(18)

计量
  • 文章访问数:  392
  • PDF下载数:  337
  • 施引文献:  0
出版历程
收稿日期:  2018-01-30
修回日期:  2018-05-23
上线日期:  2019-04-05

目录