矢量黏弹性衰减补偿高斯束偏移

石星辰, 毛伟建, 栗学磊. 2019. 矢量黏弹性衰减补偿高斯束偏移. 地球物理学报, 62(4): 1480-1491, doi: 10.6038/cjg2019L0797
引用本文: 石星辰, 毛伟建, 栗学磊. 2019. 矢量黏弹性衰减补偿高斯束偏移. 地球物理学报, 62(4): 1480-1491, doi: 10.6038/cjg2019L0797
SHI XingChen, MAO WeiJian, LI XueLei. 2019. Viscoelastic Q-compensated Gaussian beam migration based on vector-wave imaging. Chinese Journal of Geophysics (in Chinese), 62(4): 1480-1491, doi: 10.6038/cjg2019L0797
Citation: SHI XingChen, MAO WeiJian, LI XueLei. 2019. Viscoelastic Q-compensated Gaussian beam migration based on vector-wave imaging. Chinese Journal of Geophysics (in Chinese), 62(4): 1480-1491, doi: 10.6038/cjg2019L0797

矢量黏弹性衰减补偿高斯束偏移

  • 基金项目:

    国家重点研发计划项目(2018YFC0310104),国家自然科学基金重点项目(U1562216)和国家科技重大专项项目《新一代地球物理油气勘探软件系统》(2017ZX05018-001)联合资助

详细信息
    作者简介:

    石星辰, 男, 1992年生, 在读博士, 主要从事多波多分量偏移成像方法研究.E-mail:shixingchen@asch.whigg.ac.cn

    通讯作者: 毛伟建, 男, 研究员, 博士生导师, 主要从事地震数据处理、成像和反演研究.E-mail:wjmao@asch.whigg.ac.cn
  • 中图分类号: P631

Viscoelastic Q-compensated Gaussian beam migration based on vector-wave imaging

More Information
  • 基于弹性波动理论的多波多分量高斯束偏移具有计算效率高和成像准确等优点.但是目前此方法没有考虑实际地下介质的黏弹性对地震波传播的影响,从而无法补偿能量衰减和校正相位畸变,这使得该方法对一些含高黏弹性地层的成像效果不佳.针对衰减区域的成像问题,本文提出一种黏弹性衰减补偿高斯束偏移方法,该方法以多波多分量矢量波场弹性高斯束偏移方法为基础,在偏移过程中沿射线路径通过引入品质因子Q来考虑黏弹性影响并进行衰减补偿.该方法能够在偏移过程中实现PP波和PS波的自动分离及分别成像.同时,本文给出了在矢量波场偏移过程中提取角度域共成像点道集的方法,以便用于成像质量控制,并为后续速度和黏弹性参数反演提供所需的数据.本文利用2D层状模型和洼陷模型进行了方法测试,其成像结果验证了本文所提出的黏弹性衰减补偿高斯束偏移方法的可行性和有效性.

  • 加载中
  • 图 1 

    P波高斯束波形图

    Figure 1. 

    P-waves Gaussian beam waveforms

    图 2 

    SV波高斯束波形图

    Figure 2. 

    SV-waves Gaussian beam waveforms

    图 3 

    SH波高斯束波形图

    Figure 3. 

    SH-waves Gaussian beam waveforms

    图 4 

    简单层状模型

    Figure 4. 

    Simple layer model

    图 5 

    合成地震记录

    Figure 5. 

    z components of synthetic records for (a) elastic medium, (b) viscoelastic medium, and x components of synthetic records for (c) elastic medium, (d) viscoelastic medium.

    图 6 

    PP波偏移结果

    Figure 6. 

    PP-wave migrated results

    图 7 

    图 6中抽取的PP波单道波形

    Figure 7. 

    Comparison of single-trace waveforms for PP waves extracted from Fig. 6

    图 8 

    PS波偏移结果

    Figure 8. 

    PS-wave migrated results

    图 9 

    图 8中抽取的PS波单道波形

    Figure 9. 

    Comparison of single-trace waveforms for PS waves extracted from Fig. 8

    图 10 

    洼陷模型

    Figure 10. 

    Sag model

    图 11 

    PP波偏移结果

    Figure 11. 

    PP-wave migrated results

    图 12 

    图 11中抽取的PP波单道(x=2000 m处)波形

    Figure 12. 

    Comparison of single-trace waveforms for PP waves extracted from Fig. 11

    图 13 

    PS波偏移结果

    Figure 13. 

    PS-wave migrated results

    图 14 

    图 13中抽取的PS波单道(x=2000 m处)波形

    Figure 14. 

    Comparison of single-trace waveforms for PS waves extracted from Fig. 13

    图 15 

    PP波角度域共成像点道集

    Figure 15. 

    Angle-domain common image gathers for PP waves

    图 16 

    PS波角度域共成像点道集

    Figure 16. 

    Angle-domain common image gathers for PS waves

  •  

    Aki K, Richards P G. 1980. Quantitative Seismology: Theory and Methods. San Francisco: W. H. Freeman and Co.

     

    Bai M, Chen X H, Wu J, et al. 2016. Multiple-component Gaussian beam reverse-time migration based on attenuation compensation. Chinese J. Geophys. (in Chinese), 59(9): 3379-3393, doi: 10.6038/cjg20160921.

     

    Ben-Menahem A, Singh S J. 2012. Seismic Waves and Sources. New York: Springer.

     

    Berkhout A J, Wapenaar C P A. 1989. One-way versions of the Kirchhoff integral. Geophysics, 54(4): 460-467. doi: 10.1190/1.1442672

     

    Cavalca M, Fletcher R, Riedel M. 2013. Q-compensation in complex media—Ray-based and wavefield extrapolation approaches.// 2013 SEG Annual Meeting. Houston, Texas: SEG, 3831-3835.

     

    Červený V, Pšeník I. 1983. Gaussian beams and paraxial ray approximation in three-dimensional elastic inhomogeneous media. J. Geophys., 53: 1-15.

     

    Červený V. 2001. Seismic Ray Theory. Cambridge: Cambridge University Press.

     

    Chang W F, McMechan G A. 1994. 3-D elastic prestack reverse-time depth migration. Geophysics, 59(4): 597-609. doi: 10.1190/1.1443620

     

    Chen X. 2016. Study on one-way wave equation forward modeling and inverse Q migration in viscoelastic TI media [Ph. D. thesis] (in Chinese). Changchun: Jilin University.

     

    Dai T F, Kuo J T. 1986. Real data results of Kirchhoff elastic wave migration. Geophysics, 51(4): 1006-1011. doi: 10.1190/1.1442139

     

    Deng F, McMechan G A. 2008. Viscoelastic true-amplitude prestack reverse-time depth migration. Geophysics, 73(4): S143-S155. doi: 10.1190/1.2938083

     

    Du Q Z, Zhu Y T, Ba J. 2012. Polarity reversal correction for elastic reverse time migration. Geophysics, 77(2): S31-S41. doi: 10.1190/geo2011-0348.1

     

    Du Q Z, Gong X F, Zhang M Q, et al. 2014. 3D PS-wave imaging with elastic reverse-time migration. Geophysics, 79(5): S173-S184. doi: 10.1190/geo2013-0253.1

     

    Duan P F, Cheng J B, Chen A P, et al. 2013. Local angle-domain Gaussian beam prestack depth migration in a TI medium. Chinese J. Geophys. (in Chinese), 56(12): 4206-4214, doi: 10.6038/cjg20131223.

     

    Hill N R. 1990. Gaussian beam migration. Geophysics, 55(11): 1416-1428. doi: 10.1190/1.1442788

     

    Hill N R. 2001. Prestack Gaussian-beam depth migration. Geophysics, 66(4): 1240-1250. doi: 10.1190/1.1487071

     

    Hokstad K. 2000. Multicomponent Kirchhoff migration. Geophysics, 65(3): 861-873. doi: 10.1190/1.1444783

     

    Keers H, Vasco D W, Johnson L R. 2001. Viscoacoustic crosswell imaging using asymptotic waveforms. Geophysics, 66(3): 861-870. doi: 10.1190/1.1444975

     

    Kuo J T, Dai T. 1984. Kirchhoff elastic wave migration for the case of noncoincident source and receiver. Geophysics, 49(8): 1223-1238. doi: 10.1190/1.1441751

     

    Li X L, Mao W J. 2016. Multimode and multicomponent Gaussian beam prestack depth migration. Chinese J. Geophys. (in Chinese), 59(8): 2989-3005, doi: 10.6038/cjg20160822.

     

    Li X L, Mao W J, Shi X C, et al. 2018. Elastic 3D PS converted-wave Gaussian beam migration. Geophysics, 83(3): S213-S225. doi: 10.1190/geo2017-0122.1

     

    Li X Y. 1997. Fractured reservoir delineation using multicomponent seismic data. Geophysical Prospecting, 45(1): 39-64. doi: 10.1046/j.1365-2478.1997.3200262.x

     

    Mittet R. 2007. A simple design procedure for depth extrapolation operators that compensate for absorption and dispersion. Geophysics, 72(2): S105-S112. doi: 10.1190/1.2431637

     

    Qian Z P, Chapman M, Li X Y, et al. 2007. Use of multicomponent seismic data for oil-water discrimination in fractured reservoirs. The Leading Edge, 26(9): 1176-1184. doi: 10.1190/1.2780789

     

    Schleicher J, Tygel M, Ursin B, et al. 2001. The Kirchhoff-Helmholtz integral for anisotropic elastic media. Wave Motion, 34(4): 353-364. doi: 10.1016/S0165-2125(01)00077-4

     

    Traynin P, Liu J, Reilly J M. 2008. Amplitude and bandwidth recovery beneath gas zones using Kirchhoff prestack depth Q-migration.// 2008 SEG Annual Meeting. Las Vegas, Nevada: SEG, 2412-2416.

     

    Wang Y H. 2002. A stable and efficient approach of inverse Q filtering. Geophysics, 67(2): 657-663. doi: 10.1190/1.1468627

     

    Wu J, Chen X H, Bai M. 2015. Viscoacoustic gaussian beam prestack depth migration. Journal of Jilin University (Earth Science Edition), 45(5): 1530-1538. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201505025

     

    Xie Y, Xin K F, Sun J, et al. 2009. 3D prestack depth migration with compensation for frequency dependent absorption and dispersion.// 2009 SEG Annual Meeting. Houston, Texas: SEG, 2919-2923.

     

    Xie Y, Notfors C, Sun J, et al. 2010. 3D prestack beam migration with compensation for frequency dependent absorption and dispersion.// 72nd EAGE Conference and Exhibition, Extended Abstracts. SPE, EAGE.

     

    Yan J, Sava P. 2008. Isotropic angle-domain elastic reverse time migration. Geophysics, 73(6): S229-S239. doi: 10.1190/1.2981241

     

    Zhang L B, Wang H Z, Ma Z T. 2011. Analysis of absorption and dispersion characteristics of anelastic medium. Oil Geophysics Prospecting (in Chinese), 46(2): 252-258. http://d.old.wanfangdata.com.cn/Periodical/sydqwlkt201102016

     

    Zhu T Y, Harris J M, Biondi B. 2014. Q-compensated reverse-time migration. Geophysics, 79(3): S77-S87. doi: 10.1190/geo2013-0344.1

     

    Zhu T Y, Sun J Z. 2017. Viscoelastic reverse time migration with attenuation compensation. Geophysics, 82(2): S61-S73. doi: 10.1190/geo2016-0239.1

     

    白敏, 陈小宏, 吴娟等. 2016.基于吸收衰减补偿的多分量高斯束逆时偏移.地球物理学报, 59(9): 3379-3393, doi: 10.6038/cjg20160921. http://www.geophy.cn//CN/abstract/abstract13063.shtml

     

    陈雪. 2016.黏弹TI介质单程波正演模拟与反Q偏移研究[博士论文].长春: 吉林大学.

     

    段鹏飞, 程玖兵, 陈爱萍等. 2013. TI介质局部角度域高斯束叠前深度偏移成像.地球物理学报, 56(12): 4206-4214, doi: 10.6038/cjg20131223. http://www.geophy.cn//CN/abstract/abstract9984.shtml

     

    栗学磊, 毛伟建. 2016.多波多分量高斯束叠前深度偏移.地球物理学报, 59(8): 2989-3005, doi: 10.6038/cjg20160822. http://www.geophy.cn//CN/abstract/abstract13017.shtml

     

    吴娟, 陈小宏, 白敏. 2015.黏滞声波高斯束叠前深度偏移.吉林大学学报(地球科学版), 45(5): 1530-1538. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201505025

     

    张立彬, 王华忠, 马在田. 2011.非完全弹性介质的地震波吸收与频散问题研究.石油地球物理勘探, 46(2): 252-258. http://d.old.wanfangdata.com.cn/Periodical/sydqwlkt201102016

  • 加载中

(16)

计量
  • 文章访问数:  510
  • PDF下载数:  315
  • 施引文献:  0
出版历程
收稿日期:  2018-01-02
修回日期:  2018-11-21
上线日期:  2019-04-05

目录