套后介质声学性质对套管中三种模式波影响的对比分析

陈雪莲, 唐晓明. 2019. 套后介质声学性质对套管中三种模式波影响的对比分析. 地球物理学报, 62(4): 1565-1572, doi: 10.6038/cjg2019L0765
引用本文: 陈雪莲, 唐晓明. 2019. 套后介质声学性质对套管中三种模式波影响的对比分析. 地球物理学报, 62(4): 1565-1572, doi: 10.6038/cjg2019L0765
CHEN XueLian, TANG XiaoMing. 2019. Study on three mode-wave sensitivities to material acoustic property behind casing in a cased well. Chinese Journal of Geophysics (in Chinese), 62(4): 1565-1572, doi: 10.6038/cjg2019L0765
Citation: CHEN XueLian, TANG XiaoMing. 2019. Study on three mode-wave sensitivities to material acoustic property behind casing in a cased well. Chinese Journal of Geophysics (in Chinese), 62(4): 1565-1572, doi: 10.6038/cjg2019L0765

套后介质声学性质对套管中三种模式波影响的对比分析

  • 基金项目:

    国家自然科学基金(41774141)资助

详细信息
    作者简介:

    陈雪莲, 女, 1976年生, 副教授, 2006年获中国石油大学(华东)地质资源与地质工程专业博士学位, 主要从事声波测井方法及岩石物理的教学和科研工作.E-mail:chenxl@upc.edu.cn

    通讯作者: 唐晓明, 男, 教授, 主要从事声波测井方法等研究.E-mail:tangxiam@aliyun.com
  • 中图分类号: P631

Study on three mode-wave sensitivities to material acoustic property behind casing in a cased well

More Information
  • 由于套管的厚度小于目前声波测井仪器工作频率下的波长,声波仪器工作时可在套管中激发Lamb波或SH模式波.目前评价水泥胶结质量的声波测井仪器主要是利用套管中的对称Lamb波(拉伸波,S0模式)或反对称Lamb波(泄漏弯曲波,A0模式)的相对幅度或衰减评价套管与水泥之间的胶结程度.Lamb波可看作是纵波和横波在套管边界的耦合形成的,在套管中还存在另一种非耦合的SH横波,偏振方向与套管轴向平行沿着周向传播.本文基于定向声源辐射技术,实现了对称Lamb波、反对称Lamb波的分波模拟技术,数值研究了套管后耦合不同声阻抗介质时,对称Lamb波、反对称Lamb波以及SH横波的测井响应,通过频散衰减曲线以及模式波的波形响应幅度的直观显示表明,由于套管中的SH波仅向固体水泥中辐射剪切波,这一传播特征与套管中的Lamb波相比可以极大提高套管-水泥界面胶结状况的测量灵敏度.Lamb波的固有缺陷是套管与两侧介质的较大声阻抗反差使得在井中测量套管后面水泥界面的灵敏度受到相当大的限制.

  • 加载中
  • 图 1 

    超声波测井多层介质模型

    Figure 1. 

    Multi-media model with ultra-sonic logging

    图 2 

    反射系数在频率-波数域的二维谱

    Figure 2. 

    Spectrum of reflection coefficient with frequency-wavenumber domain

    图 3 

    激发套管中S0(a)和A0(b)模式所采用的声源二维谱

    Figure 3. 

    Spectrum of excited S0 (a) and A0 (b) sources with frequency-wavenumber domain

    图 4 

    套管后耦合不同介质时S0模式的频散(a)和衰减(b)曲线

    Figure 4. 

    Dispersion (a) and attenuation (b) curves of S0 mode with different media behind casing

    图 5 

    套管后耦合不同介质时A0模式的频散(a)和衰减(b)曲线

    Figure 5. 

    Dispersion (a) and attenuation (b) curves of A0 mode with different media behind casing

    图 6 

    套管后耦合不同介质时SH模式的频散(a)和衰减(b)曲线

    Figure 6. 

    Dispersion (a) and attenuation (b) curves of SH mode with different media behind casing

    图 7 

    套管后耦合低密度水泥(LWC)、常规水泥(RC)和水时S0模式的响应波形

    Figure 7. 

    Waveforms of S0 mode excited with LWC、RC or water behind casing

    图 8 

    套管后耦合低密度水泥(LWC)、常规水泥(RC)和水时A0模式的响应波形

    Figure 8. 

    Waveforms of A0 mode excited with LWC、RC or water behind casing

    图 9 

    套管后耦合低密度水泥(LWC)、常规水泥(RC)和水时SH模式的响应波形

    Figure 9. 

    Waveforms of SH mode excited with LWC、RC or water behind casing

    表 1 

    各层介质的声学参数和厚度

    Table 1. 

    Parameters with all media

    套管 轻质水泥 常规水泥
    密度/(kg·m-3) 1000 7800 1200 1800
    纵波速度/(m·s-1) 1500 5930 2755 3253
    横波速度/(m·s-1)厚度/mm 3250 1473 1739
    厚度/mm 10.36
    下载: 导出CSV
  •  

    Froelich B. 2008. Multimode evaluation of cement behind steel pipe. The Journal of the Acoustical Society of America. 123(5):3648-3648. http://scitation.aip.org/content/asa/journal/jasa/123/5/10.1121/1.2934929

     

    Chen X L, Tang X M, Dong X M. 2013-08-14. Method for extracting sleeve wave attenuation rate through dispersion correction (in Chinese). CN, 201310174996.

     

    Chen X L, Tang X M, Zhang C H, et al. 2015. Finite-difference numerical simulation and analysis on nonaxisymmetric acoustic fields in cased borehole. Chinese Journal of Geophysics (in Chinese), 58(1):318-326, doi:10.6038/cjg20150129.

     

    Chen X L, Li J S, Tang X M, et al. 2016a. The propagation characteristics of leaky flexural-Lamb waves in casing. Acta Acustica (in Chinese), 41(3):296-304. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shengxxb201603004

     

    Chen X L, Li J S, Tang X M, et al. 2016b. Simulation and analysis of leaky flexural-Lamb wavefield in a cased wellbore. Technical Acoustics (in Chinese), 35(1):38-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxjs201601009

     

    Ding Y. 2011. The research of appraisal for the circumferential distribution of cementing acoustic impedance using ultrasonic[Master's thesis](in Chinese). Beijing: China University of Petroleum (Beijing).

     

    He X, Chen H, Wang X M. 2014. Ultrasonic leaky flexural waves in multilayered media:Cement bond detection for cased wellbores. Geophysics, 79(2):A7-A11. doi: 10.1190/geo2013-0361.1

     

    Jiang W G, Zhang C G, Chen Y Q. 2008. The casing wave amplitude impaction and method for correcting low density cementing. Journal of Oil and Gas Technology (in Chinese), 30(5):77-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jhsyxyxb200805018

     

    Jie X D. 2012. Experimental research on thick wall pipes inspection based on circumferential guided wave technology[Master's thesis] (in Chinese). Beijing: Beijing University of Technology.

     

    Li Y P, Wang Y G, Zhao Y J. 2008. Dispersion of circumferential SH Wave in a hollow cylinder. Nondestructive Testing (in Chinese), 30(10):719-720. http://en.cnki.com.cn/Article_en/CJFDTotal-WSJC200810016.htm

     

    Ma Q, Hu W X. 2014. Methods for analyzing and solving dispersion characteristics of leaky modes of layered half-space with fluid loading.//The 21st International Congress on Sound and Vibration, 13-17 July, Beijing/China.

     

    Pan Y, Li L, Rossignol C, et al. 2006. Acoustic waves generated by a laser line pulse in a hollow cylinder. Ultrasonics, 44(S1):e843-e847. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ab17e63174aaab3ff3cf781f99f98dd0

     

    Rose J L. 2004. Ultrasonic Waves in Solid Media (in Chinese). He C F, trans. Beijing: Science Press.

     

    Song R L, Liu J X, Yao G J, et al. 2010. Parallel finite difference modeling of acoustic fields in nonaxisymmetric cased hole. Chinese Journal of Geophysics (in Chinese), 53(11):2767-2775, doi:10.3969/j.issn.0001-5733.2010.11.026.

     

    Song R L, Liu J X, Hou C, et al. 2012. Numerical simulation of Sector Bond log and improved cement bond image. Geophysics, 77(4):D95-D104. doi: 10.1190/geo2011-0273.1

     

    Tang J, Zhang C G, Zhang B X, et al. 2016. Cement bond quality evaluation based on acoustic variable density logging. Petroleum Exploration and Development (in Chinese), 43(3):469-475. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201603019

     

    Tang X M, Bolshakov A, Wang T L, et al. 2009-04-28. Method and apparatus for cement bond evaluation using transversely polarized shear waves: US, 7525872.

     

    Tang X M, Bolshakov A, Domangue E. 2010-08-31. Cement bond analysis. US, 7787327.

     

    Wei T. 2010. Logging Evaluation of Cement Bonding in Cased Boreholes (in Chinese). Beijing:Petroleum Industry Press.

     

    Xu F L. 2013. The reflection of ultrasound beam on layered media[Master's thesis] (in Chinese). Harbin: Harbin Institute of Technology.

     

    Xu F L, Hu H S. 2017. Inversion of the shear velocity of the cement in cased borehole through ultrasonic flexural waves. Geophysics, 82(2):D57-D68. doi: 10.1190/geo2016-0314.1

     

    Zhang C G, Li W Y. 2005. Methods for evaluating low density cementing quality by acoustic logging. Journal of Oil and Gas Technology (in Chinese), 27(4):450-454. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jhsyxyxb200504015

     

    Zhang H L. 2012. Theoretical Acoustics. Beijing:Higher Education Press.

     

    Zhao X L, ROSE J L. 2004. Guided circumferential shear horizontal waves in an isotropic hollow cylinder. Journal of the Acoustic Society of America, 5(5):1912-1916. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ab5f7317c8e94242b1d4e37962856982

     

    陈雪莲, 唐晓明, 董兴蒙. 2013-08-14.利用频散校正提取套管波衰减率的方法: 中国, 201310174996.

     

    陈雪莲, 唐晓明, 张聪慧等. 2015.套管井贴壁声源激发的非轴对称声场的有限差分模拟及结果分析.地球物理学报, 58(1):318-326, doi:10.6038/cjg20150129. http://www.geophy.cn//CN/abstract/abstract11181.shtml

     

    陈雪莲, 李建赛, 唐晓明等. 2016a.套管中泄漏弯曲型Lamb波的传播特征.声学学报, 41(3):296-304. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shengxxb201603004

     

    陈雪莲, 李建赛, 唐晓明等. 2016b.套管井中泄漏弯曲型Lamb波声场的模拟与分析.声学技术, 35(1):38-43. http://d.old.wanfangdata.com.cn/Periodical/sxjs201601009

     

    丁燕. 2011.固井水泥环声阻抗周向分布的超声波评价方法研究[硕士论文].北京: 中国石油大学(北京).

     

    江万哲, 章成广, 陈义群. 2008.低密度水泥固井对套管波幅度的影响及其校正方法.石油天然气学报, 30(5):77-80. doi: 10.3969/j.issn.1000-9752.2008.05.018

     

    颉小东. 2012.基于周向导波技术的厚壁管道检测试验研究[硕士论文].北京: 北京工业大学.

     

    李勇攀, 王寅观, 赵亚军. 2008.圆管中SH周向导波的频散特性.无损检测, 30(10):719-720. http://www.cnki.com.cn/Article/CJFDTotal-WSJC200810016.htm

     

    罗斯J L. 2004.固体中的超声波.何存福译.北京: 科学出版社.

     

    宋若龙, 刘金霞, 姚桂锦等. 2010.非轴对称套管井中声场的并行有限差分模拟.地球物理学报, 53(11):2767-2775, doi:10.3969/j.issn.0001-5733.2010.11.026. http://www.geophy.cn//CN/abstract/abstract3431.shtml

     

    唐军, 章成广, 张碧星等. 2016.基于声波-变密度测井的固井质量评价方法.石油勘探与开发, 43(3):469-475. http://d.old.wanfangdata.com.cn/Periodical/syktykf201603019

     

    魏涛. 2010.油气井固井质量测井评价.北京:石油工业出版社.

     

    许飞龙. 2013.有限声束超声波在分层介质上的反射[硕士论文].哈尔滨: 哈尔滨工业大学.

     

    章成广, 李维彦. 2005.低密度固井质量声波测井评价方法研究.石油天然气学报, 27(4):450-454. doi: 10.3969/j.issn.1000-9752.2005.04.015

     

    张海澜. 2012.理论声学.北京:高等教育出版社.

  • 加载中

(9)

(1)

计量
  • 文章访问数:  436
  • PDF下载数:  329
  • 施引文献:  0
出版历程
收稿日期:  2017-12-12
修回日期:  2018-05-03
上线日期:  2019-04-05

目录