含偏心点声源的随钻测井声场模拟和地层各向异性反演研究

卫建清, 何晓, 李希强, 陈浩, 王秀明. 2019. 含偏心点声源的随钻测井声场模拟和地层各向异性反演研究. 地球物理学报, 62(4): 1554-1564, doi: 10.6038/cjg2019L0731
引用本文: 卫建清, 何晓, 李希强, 陈浩, 王秀明. 2019. 含偏心点声源的随钻测井声场模拟和地层各向异性反演研究. 地球物理学报, 62(4): 1554-1564, doi: 10.6038/cjg2019L0731
WEI JianQing, HE Xiao, LI XiQiang, CHEN Hao, WANG XiuMing. 2019. Simulation of acoustic LWD with an eccentric source and inversion of formation anisotropy. Chinese Journal of Geophysics (in Chinese), 62(4): 1554-1564, doi: 10.6038/cjg2019L0731
Citation: WEI JianQing, HE Xiao, LI XiQiang, CHEN Hao, WANG XiuMing. 2019. Simulation of acoustic LWD with an eccentric source and inversion of formation anisotropy. Chinese Journal of Geophysics (in Chinese), 62(4): 1554-1564, doi: 10.6038/cjg2019L0731

含偏心点声源的随钻测井声场模拟和地层各向异性反演研究

  • 基金项目:

    国家自然科学基金(11374322,11774373,11734017,11574347,91630309),中国科学院A类战略性先导科技专项(XDA14020303)资助

详细信息
    作者简介:

    卫建清, 男, 1991年生, 在读博士生, 中国科学院大学声学研究生, 主要从事随钻声波测井方向的研究.E-mail:wjq910205@163.com

    通讯作者: 何晓, 男, 1981年生, 研究员, 从事声波测井和成像研究.E-mail:hex@mail.ioa.ac.cn
  • 中图分类号: P631

Simulation of acoustic LWD with an eccentric source and inversion of formation anisotropy

More Information
  • 地层横波波速测量以及各向异性评价是目前随钻声波测井应用及方法研究的难题之一.针对这些问题,本文试图从钻铤上的偏心点声源在各向异性地层中的响应出发,寻求和探讨解决方案.我们基于三维有限差分模拟的随钻测井信号,研究了偏心点声源在水平横向各向同性(HTI)慢速地层井孔中激发声波传播规律,研究结果表明:在HTI地层中偏心点声源能够同时激发出快、慢两种波形,并且此两种波形中主要分别包含快、慢弯曲波,由于与钻铤波的耦合作用,其速度总是分别小于地层快、慢横波波速,所以无法直接用于地层横波波速的测量.但根据进一步的灵敏度分析可知当在3 kHz以上时,它们的相速度分别对地层参数水平和垂直剪切模量(c66c44)最为敏感.基于此特性,本文提出一种基于解析近似解的最小二乘拟合法,能够通过快、慢波频散曲线反演地层横波波速,所测值误差小于3%,并且具有很好的容错率和稳定性;进而由横波速度反演值评价地层各向异性大小.最后,地层快横波偏振方位可以利用垂直于偏心声源方向的偶极采集的信号能量变化曲线来获取.

  • 加载中
  • 图 1 

    随钻测井声学模型示意图

    Figure 1. 

    Schematic of LWD acoustic model

    图 2 

    柱坐标系示意图

    Figure 2. 

    Cylindrical coordinate system

    图 3 

    声源与接收设计示意图

    Figure 3. 

    The schematic diagram of the sources and receivers

    图 4 

    偏心点声源分解图

    Figure 4. 

    Decomposition of the eccentric source

    图 5 

    偏心点源在方位角β=0°和90°时激发的波形和速度的提取

    Figure 5. 

    The waveforms and the corresponding STC curves, at β=0°and 90°

    图 6 

    不同声源方位角时,偏心点声源激发的弯曲波慢度

    Figure 6. 

    The slowness of flexural waves at different eccentric source azimuth

    图 7 

    不同情况下,弯曲波频散曲线

    Figure 7. 

    The dispersion curve of the flexural waves in different cases

    图 8 

    随钻偏心点声源声波测井中快、慢波灵敏度曲线

    Figure 8. 

    The sensitivity curves of fast and slow waves excited by eccentric source in ALWD

    图 9 

    根据波形反演所得地层横波慢度

    Figure 9. 

    The shear slownesses evaluated according to the waves

    图 10 

    3 ms时,距离声源3 m处井孔内r-θ面的正应力云图

    Figure 10. 

    Contour maps for the stresses of the r-θ in the borehole at 3m distance from the source at 3 ms

    图 11 

    BD方向偶极子采集信号归一化能量随仪器旋转角度的变化图

    Figure 11. 

    The relative energy of waveforms in BD directions with the change of rotation angle of tools

    表 1 

    地层参数

    Table 1. 

    Formation parameters

    c11/
    GPa
    c13/
    GPa
    c33/
    GPa
    c44/
    GPa
    c66/
    GPa
    ρ/
    (kg·m-3)
    地层 22.00 12.00 14.00 2.40 3.12 2200.00
    下载: 导出CSV

    表 2 

    钻铤及钻铤内外流体的参数

    Table 2. 

    Parameters of the collar and the fluid in and out of the collar

    vP/(m·s-1) vS/(m·s-1) ρ/(kg·m-3)
    钻铤 5940 3220 7840
    流体 1500 0 1000
    下载: 导出CSV

    表 3 

    其他参量的测量误差对横波波速反演的影响

    Table 3. 

    Influence of measurement error of other parameters on the inversion of S-wave velocity

    影响的参数 反演快横波误差/% 反演慢横波误差/%
    流体密度 2.08 2.49
    流体声速 2.69 1.57
    地层密度 2.69 2.05
    地层纵波速度 1.78 0.61
    下载: 导出CSV
  •  

    Auld B A. 1973. Acoustic Fields and Waves in Solids. New York:John Wiley and Sons Inc.

     

    Blyth M, Sakiyama N, Iritani R, et al. 2016. Understanding LWD quadrupole shear in anisotropic environments.//22nd Formation Evaluation Symposium of Japan. Chiba, Japan: Society of Petrophysicists and Well-Log Analysts.

     

    Byun J, Toksöz M N. 2003. Analysis of the acoustic wavefields excited by the Logging-While-Drilling (LWD) tool. Geosystem Engineering, 6(1):19-25. doi: 10.1080/12269328.2003.10541200

     

    Byun J, Joo Y. 2009. Effects on Logging-While-Drilling (LWD) data of mismatch between multipole sources. Exploration Geophysics, 40(1):143-153. https://www.onacademic.com/detail/journal_1000040445655610_e28d.html

     

    Chen S T. 1988. Shear-wave logging with dipole sources. Geophysics, 53(5):659-667. doi: 10.1190/1.1442500

     

    Chen T R, Wang B, Zhu Z Y, et al. 2010. Asymmetric source acoustic LWD for improved formation shear velocity estimation.//SEG Technical Program Expanded Abstracts 2010. Denver, Colorado: Society of Exploration Geophysicists, 548-552.

     

    Chen Y Y. 2014. Research on the acoustic filed in mismatched and eccentric cross-dipole sonic well logging[Master's thesis] (in Chinese). Beijing: University of Chinese Academy of Sciences.

     

    Cui Z W. 2004. Theoretical and numerical study of modified Biot's models, acoustoelectric well logging and acoustic logging while drilling excited by multipole acoustic sources[Ph. D. thesis] (in Chinese). Changchun: Jilin University.

     

    Ekstrom M P. 1995. Dispersion estimation from borehole acoustic arrays using a modified matrix pencil algorithm.//Conference Record of the Twenty-Ninth Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA, USA: IEEE, 449-453.

     

    He X, Hu H S. 2009. Borehole flexural modes in transversely isotropic formations:Low-frequency asymptotic velocity. Geophysics, 74(4):E149-E158. doi: 10.1190/1.3141442

     

    He X. 2010. Simulations of acoustic logs in transversely isotropic formations and researches on permeability inversion[Ph. D. thesis](in Chinese). Harbin: Harbin Institute of Technology.

     

    He X, Hu H S, Guan W. 2010. Fast and slow flexural waves in a deviated borehole in homogeneous and layered anisotropic formations. Geophysical Journal International, 181(1):417-426. doi: 10.1111/gji.2010.181.issue-1

     

    Hsu C J, Sinha B K. 1998. Mandrel effects on the dipole flexural mode in a borehole. The Journal of the Acoustical Society of America, 104(4):2025-2039. doi: 10.1121/1.423767

     

    Huang X J. 2003. Effects of tool positions on borehole acoustic measurements: A stretched grid finite difference approach[Ph. D. thesis]. Cambridge, MA: Massachusetts Institute of Technology.

     

    Leggett J V Ⅲ, Dubinsky V, Patterson D, et al. 2001. Field test results demonstrating improved real-time data quality in an advanced LWD acoustic system.//SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana: Society of Petroleum Engineers.

     

    Li X Q. 2013. Theoretical studies of acoustic logging while drilling[Ph. D. thesis](in Chinese). Beijing: University of Chinese Academy of Sciences.

     

    Li X Q, Chen H, He X, et al. 2013. Analyses on mode waves of acoustic logging while drilling in transversely isotropic formations. Chinese Journal of Geophysics (in Chinese), 56(9):3212-3222, doi:10.6038/cjg20130933.

     

    Liu L, Lin W J, Zhang H L, et al. 2015. A numerical investigation of the acoustic mode waves in a deviated borehole penetrating a transversely isotropic formation. Science China Physics, Mechanics & Astronomy, 58(8):084301. http://www.cnki.com.cn/Article/CJFDTotal-JGXG201508005.htm

     

    Minear J, Birchak R, Robbins C, et al. 1995. Compressional slowness measurements while drilling.//SPWLA 36th Annual Logging Symposium. Paris, France: Society of Petrophysicists and Well-Log Analysts.

     

    Nwosu N, Alford J, Kadir H, et al. 2015. Enhancing shale reservoir completion design using oriented unipole logging while drilling sonic measurements in horizontal well.//SPWLA 56th Annual Logging Symposium. Long Beach, California, USA: Society of Petrophysicists and Well-Log Analysts.

     

    Sakiyama N, Syresin D, Iritani R, et al. 2016. LWD unipole for probing azimuthally heterogeneous formation properties: Characterization through numerical modeling and field data.//2016 SEG International Exposition and Annual Meeting. Dallas, Texas: Society of Exploration Geophysicists, 612-616.

     

    Sinha B K, Norris A N, Chang S K. 1994. Borehole flexural modes in anisotropic formations. Geophysics, 59(7):1037-1052. doi: 10.1190/1.1443660

     

    Sinha B K, Simsek E, Asvadurov S. 2009. Influence of a pipe tool on borehole modes. Geophysics, 74(3):E111-E123. doi: 10.1190/1.3085644

     

    Sinha B K, Simsek E. 2010. Sonic logging in deviated wellbores in the presence of a drill collar.//2010 SEG Annual Meeting. Denver, Colorado: SEG.

     

    Su Y D, Tang X M, Zhuang C X, et al. 2013. Mapping formation shear-velocity variation by inverting logging-while-drilling quadrupole-wave dispersion data. Geophysics, 78(6):D491-D498. doi: 10.1190/geo2013-0136.1

     

    Syresin D, Sakiyama N, Yamamoto H, et al. 2016. Characterization of azimuthal slowness sensitivity for LWD unipole tools.//SPWLA 57th Annual Logging Symposium. Reykjavik, Iceland: Society of Petrophysicists and Well-Log Analysts.

     

    Tang X M, Cheng A. 2004. Quantitative Borehole Acoustic Methods. San Diego:Elsevier.

     

    Wang H, Tao G. 2011. Wavefield simulation and data-acquisition-scheme analysis for LWD acoustic tools in very slow formations. Geophysics, 76(3):E59-E68. doi: 10.1190/1.3552929

     

    Wang P, Bose S, Sinha B K, et al. 2016. Dipole shear anisotropy using logging-while-drilling sonic tools.//SPWLA 57th Annual Logging Symposium. Reykjavik, Iceland: Society of Petrophysicists and Well-Log Analysts.

     

    Wang P, Bose S, Sinha B K, et al. 2017. Logging-while-drilling dipole shear logging in fast formations using higher-order formation flexural mode.//SPWLA 58th Annual Logging Symposium. Oklahoma City, Oklahoma, USA: Society of Petrophysicists and Well-Log Analysts.

     

    Wang R J, Qiao W X, Ju X D. 2012. Numerical study of formation anisotropy evaluation using cross dipole acoustic LWD. Chinese Journal of Geophysics (in Chinese), 55(11):3870-3882, doi:10.6038/j.issn.0001-5733.2012.11.035.

     

    Wang R J, Qiao W X. 2015. Numerical study on quadrupole acoustic LWD in VTI formations. Chinese Journal of Geophysics (in Chinese), 58(8):2862-2872, doi:10.6038/cjg20150820.

     

    Wang T, Tang X M. 2003a. LWD quadrupole shear measurement in anisotropic formations.//SEG Technical Program Expanded Abstracts 2003. Dallas, Texas: Society of Exploration Geophysicists, 309-312.

     

    Wang T, Tang X M. 2003b. Finite-difference modeling of elastic wave propagation:A nonsplitting perfectly matched layer approach. Geophysics, 68(5):1749-1755. doi: 10.1190/1.1620648

     

    Wang T, Dawber M, Boonen P M. 2011. Theory of unipole acoustic logging tools and their relevance to dipole and quadrupole tools for slow formations.//SPE Annual Technical Conference andExhibition. Denver, Colorado, USA: Society of Petroleum Engineers.

     

    Yan S G, Song R L, Lü W G, et al. 2011. Numerical simulation of acoustic fields excited by cross-dipole source in deviated wells in transversely isotropic formation. Chinese Journal of Geophysics (in Chinese), 54(9):2412-2418, doi:10.3969/j.issn.0001-5733.2011.09.025.

     

    Yang Y F, Guan W, Cui N G, et al. 2016. FDTD simulation and analysis of the collar wave propagation in acoustic logging while drilling. Chinese Journal of Geophysics (in Chinese), 59(1):368-380, doi:10.6038/cjg20160131.

     

    Zhang H L, Wang X M, Zhang B X. 2004. Acoustic Field and Waves in Borehole (in Chinese). Beijing:Science Press.

     

    Zhu Z Y, Toksöz M N, Cheng C H. 1993. Propagation of flexural waves in an azimuthally anisotropic borehole model.//SEG Technical Program Expanded Abstracts 1993. Washington, DC: Society of Exploration Geophysicists, 68-71.

     

    Zhu Z Y, Nafi Toksöz M, Rao R, et al. 2008. Experimental studies of monopole, dipole, and quadrupole acoustic logging while drilling (LWD) with scaled borehole models. Geophysics, 73(4):E133-E143. doi: 10.1190/1.2919827

     

    陈愿愿. 2014.不匹配和偏心的正交偶极声波测井声场研究[硕士论文].北京: 中国科学院大学.

     

    崔志文. 2004.多孔介质声学模型与多极源声电效应测井和多极随钻声测井的理论与数值研究[博士论文].长春: 吉林大学.

     

    何晓. 2010.横观各向同性地层声波测井波场模拟与地层渗透率反演[博士论文].哈尔滨: 哈尔滨工业大学.

     

    李希强. 2013.随钻声波测井理论研究[博士论文].北京: 中国科学院大学.

     

    李希强, 陈浩, 何晓等. 2013.横向各向同性地层中随钻声波测井模式波分析.地球物理学报, 56(9):3212-3222, doi:10.6038/cjg20130933. http://www.geophy.cn//CN/abstract/abstract9770.shtml

     

    王瑞甲, 乔文孝, 鞠晓东. 2012.利用随钻正交偶极子声波测井评价地层各向异性的数值研究.地球物理学报, 55(11):3870-3882, doi:10.6038/j.issn.0001-5733.2012.11.035. http://www.geophy.cn//CN/abstract/abstract9080.shtml

     

    王瑞甲, 乔文孝. 2015. VTI地层随钻四极子声波测井数值研究.地球物理学报, 58(8):2862-2872, doi:10.6038/cjg20150820. http://www.geophy.cn//CN/abstract/abstract11739.shtml

     

    阎守国, 宋若龙, 吕伟国等. 2011.横向各向同性地层斜井中正交偶极子激发声场的数值模拟.地球物理学报, 54(9):2412-2418, doi:10.3969/j.issn.0001-5733.2011.09.025. http://www.geophy.cn//CN/abstract/abstract8178.shtml

     

    杨玉峰, 关威, 崔乃刚等. 2016.随钻声波测井FDTD模拟及钻铤波传播特性研究.地球物理学报, 59(1):368-380, doi:10.6038/cjg20160131. http://www.geophy.cn//CN/abstract/abstract12115.shtml

     

    张海澜, 王秀明, 张碧星. 2004.井孔的声场和波.北京:科学出版社.

  • 加载中

(11)

(3)

计量
  • 文章访问数:  439
  • PDF下载数:  314
  • 施引文献:  0
出版历程
收稿日期:  2017-11-30
修回日期:  2019-02-25
上线日期:  2019-04-05

目录