2017年精河MS6.6地震邻区构造应力场特征与发震断层性质的厘定

刘兆才, 万永革, 黄骥超, 靳志同, 杨帆, 李瑶. 2019. 2017年精河MS6.6地震邻区构造应力场特征与发震断层性质的厘定. 地球物理学报, 62(4): 1336-1348, doi: 10.6038/cjg2019L0707
引用本文: 刘兆才, 万永革, 黄骥超, 靳志同, 杨帆, 李瑶. 2019. 2017年精河MS6.6地震邻区构造应力场特征与发震断层性质的厘定. 地球物理学报, 62(4): 1336-1348, doi: 10.6038/cjg2019L0707
LIU ZhaoCai, WAN YongGe, HUANG JiChao, JIN ZhiTong, YANG Fan, LI Yao. 2019. The tectonic stress field adjacent to the source of the 2017 Jinghe MS6.6 earthquake and slip property of its seismogenic fault. Chinese Journal of Geophysics (in Chinese), 62(4): 1336-1348, doi: 10.6038/cjg2019L0707
Citation: LIU ZhaoCai, WAN YongGe, HUANG JiChao, JIN ZhiTong, YANG Fan, LI Yao. 2019. The tectonic stress field adjacent to the source of the 2017 Jinghe MS6.6 earthquake and slip property of its seismogenic fault. Chinese Journal of Geophysics (in Chinese), 62(4): 1336-1348, doi: 10.6038/cjg2019L0707

2017年精河MS6.6地震邻区构造应力场特征与发震断层性质的厘定

  • 基金项目:

    国家自然科学基金(41674055,41704053)和河北省地震局地震科技星火计划项目(DZ20170109001)共同资助

详细信息
    作者简介:

    刘兆才, 男, 1993年生, 在读硕士研究生, 主要从事震源机制、构造应力场等研究.E-mail:y_shunjian@126.com

    通讯作者: 万永革, 男, 1967年生, 研究员, 主要从事地震学、地球动力学等方面研究.E-mail:wanyg217217@vip.sina.com
  • 中图分类号: P315

The tectonic stress field adjacent to the source of the 2017 Jinghe MS6.6 earthquake and slip property of its seismogenic fault

More Information
  • 2017年8月9日新疆精河发生MS6.6地震,深入了解该地震的构造应力背景及其所破裂断层的活动特性对理解其孕震过程及震后的地震危险性估计十分重要.本研究自GCMT目录收集了2017年8月9日新疆精河MS6.6地震震中及其邻区的253个震源机制解,应用MSATSI软件反演了该地震及其邻区的应力场.反演结果显示,西北区域应力场的最大主压应力轴的方位从西到东呈现出NNW-NS-NNE的渐变过程,东南区域应力场最大主压应力轴的方位稳定于NNE向,倾角都较小;最大主张应力轴都基本沿东西向,倾角相对较大;西北区域较大的R值显示出区域应力场主要受近NS向水平挤压作用,中部挤压分量相对较大,西部和东部挤压分量相对较小.根据所反演的区域构造应力场,结合发震的库松木契克山前断裂的地质调查参数,估算该断裂的理论滑动角为137.7°,误差为21.3°,验证了地质上得到的库松木契克山前断裂的逆冲兼右旋走滑性质.判断该断裂滑动性质的另一种方法是通过发生在该断裂上地震的震源机制验证.本研究首先计算了发生在库松木契克山前断裂不同机构给出的震源机制节面在所反演的局部应力场作用下的理论滑动角,发现理论滑动角与实际地震震源机制滑动角相差很小,验证了反演的局部应力场的正确性;而后计算了局部应力场作用下的库松木契克山前断裂上的理论震源机制与实际发生地震震源机制的三维空间旋转角,发现两者在给定的误差范围内是一致的.本研究自地球物理角度确证了库松木契克山前断裂的滑动性质,为该地区的地震孕育环境、地震活动性和地球动力学研究提供了基础.

  • 加载中
  • 图 1 

    精河地区震源机制解分布图

    Figure 1. 

    Distribution of focal mechanism solutions in Jinghe areas

    图 2 

    模型长度与数据拟合误差之间的折中曲线图

    Figure 2. 

    Trade-off between model length and misfit calculated from the corresponding damping parameters

    图 3 

    应力场反演结果

    Figure 3. 

    Results of stress field inversion

    表 1 

    震源机制解分类依据表

    Table 1. 

    Categories of tectonics stress regime for focal mechanism

    类型 P轴倾角 B轴倾角 T轴倾角
    正断型(NF) ≥52° ≤35°
    正走滑型(NS) 40°≤倾角≤52° ≤20°
    走滑型(SS) ≤20° ≥45° < 40°
    < 40° ≥45° ≤20°
    逆走滑型(TS) ≤20° 40°≤倾角≤52°
    逆断型(TF) ≤35° ≥52°
    不确定型(U) 上述类型之外的震源机制解
    下载: 导出CSV

    表 2 

    1°×1°网格划分反演得到的应力场参数

    Table 2. 

    Inverted stress field parameters on grid of 1°×1°

    分区中心 σ1 σ2 σ3 R
    方位角/(°) 倾伏角/(°) 方位角/(°) 倾伏角/(°) 方位角/(°) 倾伏角/(°)
    (74, 35) -141.54
    -321.5~38.4
    37.89
    -52.1~90
    32.4
    -147.5~212.4
    51.96
    -38~89.1
    126.17
    105.6~145.4
    2.94
    -18.1~39.3
    0.06
    10~0.55
    (74, 37) -175.32
    -194.2~-162.2
    1.56
    -52.1~56.2
    -76.71
    -256.3~103.2
    79.71
    -3~90
    94.4
    2.8~194.1
    10.17
    -65.2~89
    0.5
    0.07~0.97
    (74, 38) 2.75
    -13.5~14.6
    4.2
    -45~22.4
    -100.95
    -280.8~78.7
    72.76
    -16.9~89.2
    94.01
    -85.3~273.9
    16.68
    -72.9~89.9
    0.72
    0.36~1
    (74, 39) -176.31
    -194~-158
    3.25
    -13.9~45
    -77.43
    -257.3~102.5
    69.83
    -20~88.1
    92.51
    -87.3~272.5
    19.89
    -70~90
    0.84
    0.54~0.99
    (74, 41) -5.35
    -19.2~6.2
    5.05
    -45~18.3
    89.51
    73.1~125.5
    43.79
    -40.8~81.1
    -100.56
    -280.5~79.4
    45.77
    6.6~89.8
    0.95
    0.55~0.99
    (75, 37) -173.05
    -226.6~-142.2
    5.28
    -20~45
    -75.11
    -253.2~91.7
    56.21
    -31.9~88.5
    93.47
    -86.5~272.2
    33.26
    -56.7~89.2
    0.53
    0.11~0.99
    (75, 38) -2.62
    -26.4~19.8
    12.66
    -45~37.1
    -123.77
    -303.6~56.2
    66.53
    -20.4~89.6
    91.92
    -78.8~265.8
    19.42
    -68.4~88.2
    0.55
    0.17~0.99
    (75, 39) 4.3
    -11.6~16.6
    9.08
    -44.9~22
    -92.36
    -269.8~-66.8
    35.95
    -52.6~86.7
    106.35
    -67.6~285.8
    52.56
    -35.5~89.6
    0.79
    0.43~1
    (75, 40) 2.08
    -9.3~11.9
    7.9
    0.9~24.1
    -109.02
    -275.5~-76.2
    68.92
    -20~86.3
    94.89
    44.3~261.1
    19.41
    -69.2~84.6
    0.85
    0.6~0.99
    (75, 41) -2.94
    -11.2~6.3
    5.05
    -45~16.6
    -93.83
    -101.1~-76.5
    9.96
    -67.4~11.1
    113.61
    -66.3~291.9
    78.81
    21.1~89.8
    0.95
    0.56~0.98
    (75, 42) -5.23
    -14.9~5.5
    5.24
    -45~20.6
    97.42
    75.9~260
    67.27
    -19.9~85.5
    -97.36
    -277~82.1
    22.05
    -55.4~90
    0.93
    0.5~0.99
    (76, 35) 26.84
    16.2~36.3
    14.28
    -41.4~35.2
    -133.46
    -311~43.5
    74.87
    52.7~89.5
    118.09
    105.7~133.6
    4.89
    -24.9~34.6
    0.56
    0.2~0.95
    (76, 36) 18.24
    7.1~29.7
    2.77
    -44.6~18.1
    -79.18
    -258.7~100.8
    69.44
    -19.9~89.3
    109.27
    -70.3~288.9
    20.35
    -69.5~89.3
    0.67
    0.45~1
    (76, 38) 7.18
    -7~31
    4.27
    -44.9~18.6
    -88.74
    -251.4~12.8
    54.09
    9.2~89.6
    100.24
    85.3~121.4
    35.58
    -15.1~80.7
    0.59
    0.3~0.98
    (76, 39) 12.78
    -2.9~26.8
    6.34
    -44.4~29.7
    -103.93
    -283.3~75.7
    76.11
    -12.7~89.6
    104.17
    -60.3~262.2
    12.3
    -76.7~87.8
    0.68
    0.27~1
    (76, 40) 1.65
    -9~8.9
    6.68
    -0.5~17
    -94.43
    -264.5~-76.6
    42.12
    -46.4~77
    98.89
    79.8~274.2
    47.1
    -40.6~88.5
    0.88
    0.58~0.99
    (76, 41) -1.61
    -15.9~8.5
    3.65
    -45~12.4
    -92.11
    -99.2~-79.3
    7.86
    -32.6~18.2
    113.14
    -65.4~292
    81.33
    57.2~89.7
    0.82
    0.47~0.84
    (76, 42) 171.18
    154.2~179.4
    0.21
    -11.4~45
    -98.81
    -109.8~-88.6
    4.49
    -46.7~20.7
    78.47
    -101.5~258.4
    85.5
    43~89.9
    0.89
    0.51~0.95
    (76, 44) 165.19
    151.1~174.7
    3.69
    -9~44.7
    71.35
    64.2~85.9
    46.13
    -18~46.7
    -101.28
    -280.6~78.2
    43.63
    42.9~89.6
    0.85
    0.49~0.95
    (77, 35) 27.38
    14.7~36.6
    11.97
    -43.7~40
    -138.35
    -318~41.3
    77.66
    49.1~89.6
    118.01
    104.5~131.8
    2.95
    -28.3~38.2
    0.49
    0.11~0.97
    (77, 36) -162.79
    -174.5~-155.3
    0.55
    -15.9~44.5
    -70.82
    -250.8~109.1
    74.32
    -15.3~90
    107.06
    -72~286.8
    15.67
    -73.8~89.7
    0.68
    0.43~1
    (77, 38) 5.27
    -4.5~21.9
    3.23
    -44.7~20.2
    -92.45
    -253.4~84.8
    67.24
    32.2~89.5
    96.61
    88~110.6
    22.51
    -10.3~57.8
    0.59
    0.28~0.97
    (77, 39) 4.67
    -8.1~16.5
    10.78
    -2.8~32.4
    -121.19
    -275.2~-78.7
    72
    -15.6~88.8
    97.44
    47.6~240.5
    14.25
    -72.6~80.4
    0.64
    0.39~1
    (77, 40) -3.18
    -16.1~7.5
    9.23
    -0.4~19.5
    -93.8
    -108.8~-77.6
    3.82
    -39.7~50.9
    153.96
    83.2~268
    80
    38.9~87.6
    0.87
    0.53~0.98
    (77, 41) 177.55
    156.9~188.7
    0.64
    -11.1~45
    87.26
    73.3~100.2
    24.24
    -18.3~47.7
    -91.02
    -270~87.9
    65.75
    42.3~90
    0.77
    0.42~0.88
    (77, 42) -10.36
    -28.2~0.5
    0.11
    -45~10.7
    79.69
    70~91
    25.74
    -26~34.6
    -100.59
    -280.4~79.4
    64.26
    55.1~89.9
    0.83
    0.44~0.91
    (77, 43) 168.96
    160.4~179.4
    6.82
    -4.1~44.8
    78.01
    71~89.4
    7.88
    -28.2~32
    -60.61
    -239.2~117.2
    79.55
    57.2~89.9
    0.92
    0.53~0.99
    (78, 35) 22.03
    0.3~159.1
    11.79
    -72.6~88.5
    -145.86
    -325.8~34.1
    77.95
    -5.2~89.8
    112.55
    105.2~121.4
    2.46
    -12~26.7
    0.24
    0.01~0.68
    (78, 36) -162.73
    -327.1~-154.6
    22.66
    -61.5~84.4
    10.67
    -166.7~190.2
    67.21
    -11~89.4
    106.29
    94.3~117.7
    2.35
    -17~17
    0.32
    0.02~0.67
    (78, 37) -165.67
    -172.6~-155.9
    10.55
    -3.7~44.2
    -55.19
    -233.2~115.2
    61.97
    -26.3~89.2
    99.21
    -70.4~131.4
    25.64
    -63~87.1
    0.74
    0.52~1
    (78, 39) 5.88
    -5.7~18.4
    5.21
    -0.8~15
    -91.94
    -270.6~-67.8
    56.15
    -32.5~85.6
    99.32
    75.9~271.8
    33.33
    -56~88.5
    0.79
    0.66~1
    (78, 40) -4.82
    -16.6~6.3
    5.9
    -0.1~14.7
    -97.74
    -108.3~-84.3
    26.24
    -27.8~35.3
    96.89
    83.9~265
    63
    53.6~87.6
    0.82
    0.5~0.93
    (78, 41) -4.64
    -13.6~4.8
    3.15
    -45~11.6
    86.07
    76.9~96.3
    12.73
    -23.4~33.4
    -108.27
    -286.8~69.9
    76.87
    55.9~89.7
    0.85
    0.55~0.91
    (78, 42) -3.52
    -18.3~10.2
    1.55
    -44.9~12.7
    87.93
    0~107.8
    43.09
    -3.1~52.6
    -95.17
    -267.3~-52.3
    46.86
    0~89.3
    0.79
    0.45~0.85
    (78, 43) 170.95
    163.1~179
    1.17
    -8.5~44.8
    80.17
    71.4~89.2
    33.74
    -20.2~68.1
    -97.3
    -277.2~82.7
    56.24
    21.4~90
    0.94
    0.6~0.97
    (78, 44) 167.61
    159.6~176.5
    0.17
    -9.6~44.9
    41.55
    -110.5~86.7
    89.71
    -0.2~89.71
    -102.39
    -199.4~35.6
    0.23
    -89.7~90
    0.94
    0.65~0.99
    (79, 35) -165.35
    -171.8~-154.6
    0.99
    -55.5~75
    -53.8
    -233.7~125.7
    87.29
    15~90
    104.61
    98.3~116.3
    2.52
    -13.6~19.4
    0.21
    0.02~0.63
    (79, 37) -168.28
    -174~-156.9
    11.03
    -1.6~44.3
    -50.62
    -90~104.2
    67.22
    -18.3~90
    97.72
    -58.2~127.3
    19.67
    -62.6~84.1
    0.72
    0.49~1
    (79, 39) 1.45
    -5.2~12
    2.73
    -45~11.2
    -92.84
    -270.4~86.4
    57.46
    -32.4~85.3
    93.19
    -86.7~272.8
    32.39
    -57~89.8
    0.85
    0.67~0.99
    (79, 40) -10.06
    -25~4.8
    5.3
    -45~13.8
    81.13
    70.7~94.5
    12.59
    -25.6~38.1
    -122.44
    -301.8~52.7
    76.31
    51.1~89.9
    0.89
    0.49~0.92
    (79, 41) -10.37
    -23.7~2.7
    6.06
    -45~17
    -100.61
    -108.4~-87.4
    2.28
    -21.5~22.5
    148.85
    -24.8~326.1
    83.53
    65.7~89.8
    0.8
    0.4~0.88
    (79, 42) -6.52
    -11.5~2.5
    3.86
    -45~9.2
    83.57
    78.3~94.6
    1.31
    -44.7~35.1
    -167.74
    -347.5~11.7
    85.93
    54.9~89.9
    0.93
    0.6~0.96
    (80, 35) -167.42
    -171.8~-157.8
    7.68
    -4.8~44.4
    -23.89
    -200.1~155.1
    80.48
    58.6~89.8
    101.82
    96.6~111.9
    5.59
    -13.1~23.3
    0.4
    0.25~0.77
    (80, 36) -168.03
    -173.8~-160.8
    6.85
    -13.6~44.6
    -22.54
    -202.1~157
    81.7
    63.4~89.8
    101.41
    94.5~109.1
    4.66
    -7~18.7
    0.42
    0.18~0.66
    (80, 41) -9.39
    -19.2~-0.6
    5.95
    -45~14.6
    -103.29
    -111.8~-91
    33.13
    -20~37.3
    89.57
    -90~263
    56.25
    1.6~89.1
    0.81
    0.49~0.88
    (80, 42) -8.06
    -15.3~-0.2
    7.45
    2.2~13.3
    -100.52
    -105.9~-90.4
    18.18
    -17.3~24.2
    103.29
    92.6~242.9
    70.25
    64.9~87.4
    0.86
    0.56~0.88
    (80, 43) -8.22
    -13.6~-2.5
    4.29
    -45~10.8
    -98.87
    -103.7~-92.2
    8.56
    -19.9~18.6
    108.13
    -65.2~287.4
    80.41
    69.3~89.9
    0.94
    0.64~0.94
    (80, 45) -8.01
    -14.3~-2
    2.76
    -44.9~8.4
    82.15
    75.2~87.5
    3.29
    -33.1~26.6
    -137.92
    -313.3~25.6
    85.7
    56.6~89.7
    0.99
    0.71~0.98
    (81, 35) 8.26
    -37~143.3
    8.02
    -80.2~88
    179.6
    0.2~359.5
    81.89
    -7.6~89.2
    -81.91
    -91.2~-73.1
    1.21
    -10.2~16.1
    0.27
    0~0.41
    (81, 39) 3.43
    0~10.9
    2.34
    -44.9~8.5
    -89.55
    -266.7~-78.2
    51.74
    -38~87.6
    95.27
    -84.7~275.2
    38.16
    -51.8~89.7
    0.9
    0.75~1
    (81, 41) -5.95
    -12.3~2.1
    6.63
    -0.9~13.9
    -99.43
    -104.4~-88
    27.58
    -19~29.2
    96.41
    -82.1~273.2
    61.5
    60.6~89.6
    0.89
    0.59~0.95
    (81, 42) -7.22
    -13.1~-0.2
    5.76
    -44.9~11.7
    -100.23
    -103.6~-90.4
    27.56
    -20.7~27.56
    93.6
    76.1~270
    61.74
    61.74~89.8
    0.9
    0.63~0.95
    (82, 35) 8.57
    -16.2~149.1
    13.98
    -67.3~87
    -173.61
    -350.5~5.7
    76.01
    -11.2~89.3
    -81.56
    -91.9~-74.6
    0.51
    -4.1~16.5
    0.33
    0.01~0.46
    (82, 36) 8.46
    2.1~17.1
    6.51
    -44.8~30.4
    -174.85
    -317.8~-2.6
    83.48
    59.3~89.8
    -81.59
    -88.9~-74.7
    0.37
    -6.7~18.3
    0.48
    0.15~0.7
    (82, 41) -4.74
    -16.5~4.2
    4.82
    -45~14.4
    -98.34
    -108.1~-85.9
    36.73
    -19.3~44.3
    91.65
    -88.3~270.9
    52.85
    45.1~89.5
    0.86
    0.55~0.94
    (82, 42) -5.96
    -11.1~2.5
    5.15
    1.1~12
    -100.15
    -104.2~-88.2
    39.04
    -26.7~43.2
    90.32
    88.1~264.9
    50.49
    46~88.5
    0.93
    0.65~0.99
    (82, 43) -6.96
    -12.6~0.3
    3.57
    -44.8~11.7
    84.68
    77.7~89.9
    24.71
    -23~29.4
    -104.66
    -282.9~69.7
    65
    60.4~89.8
    0.99
    0.66~0.98
    (82, 44) -7.48
    -13.3~-1.6
    2.02
    -44.9~7.6
    86.17
    77.2~88.3
    60.99
    -17.2~60.99
    -98.6
    -278.1~81.3
    28.92
    28.92~89.4
    0.96
    0.68~0.99
    (82, 45) -7
    -14.2~-0.7
    1.72
    -44.9~7.1
    86.22
    76.6~88.9
    61.87
    -24.5~61.87
    -97.92
    -277.9~81.9
    28.07
    28.07~89.6
    0.97
    0.74~0.99
    (83, 36) 10.82
    4.8~17.2
    3.89
    -44.9~15.3
    170.82
    -9.1~348.8
    85.86
    72.3~89.9
    -79.28
    -85.1~-73.3
    1.41
    -10.8~14.5
    0.53
    0.32~0.73
    (83, 41) -1.43
    -7.8~6.1
    3.36
    -45~10.3
    -93.54
    -118.5~-84.3
    32.21
    -34.6~43.5
    93.87
    83.4~273.2
    57.58
    45.8~89.4
    0.9
    0.62~0.95
    (83, 42) -5.38
    -14.4~4.7
    4.2
    -45~12.5
    -97.92
    -105.9~-55.7
    31.11
    -23~49.1
    91.52
    -59.4~270.9
    58.55
    40.8~89.5
    0.93
    0.59~0.94
    (83, 43) -7.66
    -19~0.9
    1
    -45~11.1
    86.59
    72.3~263.3
    76.76
    -13~76.76
    -97.89
    -277.7~81.7
    13.2
    -76.4~89.7
    0.91
    0.63~0.97
    (83, 44) -8.7
    -19~-0.4
    0.8
    -44.8~9.8
    83.95
    76.8~91.8
    59.82
    -21.5~59.82
    -99.1
    --278.2~80.9
    -23.9
    -64.9~89.9
    0.93
    0.64~1
    (84, 36) 13.43
    7.2~19.3
    2.62
    -44.8~15.5
    151.26
    -6.3~327.6
    86.47
    69.4~89.8
    -76.67
    -83~-72
    2.37
    -16.7~18.2
    0.56
    0.35~0.77
    (84, 37) 13.86
    10.3~19.6
    1.53
    -44.5~9.4
    132.6
    -44.2~309.4
    86.82
    71.6~89.6
    -76.21
    -79.4~-70.6
    2.79
    -15.1~17.9
    0.66
    0.51~0.85
    (84, 42) -1.52
    -12.4~9.7
    0.29
    -45~8.9
    88.54
    79.7~99.8
    11.42
    -31.7~52.2
    -92.97
    -272.8~87
    78.57
    37.8~89.8
    0.96
    0.6~0.96
    (84, 43) 172.55
    158.9~184.5
    3.18
    -10~45
    65.37
    -114.2~241.5
    79.34
    -10~88.2
    -96.88
    -276.4~82.8
    10.17
    -79.7~89.8
    0.82
    0.6~1
    (85, 44) -179.64
    -191.9~-168.3
    4.74
    -6~45
    85.96
    0~101.2
    42.82
    -30.2~50.1
    -84.58
    -264.4~95.4
    46.79
    39.7~89.9
    0.93
    0.57~0.96
    (86, 35) 18.12
    10.7~23.9
    0.04
    -44.5~14.7
    108.67
    -71.2~288.5
    86.18
    72.6~90
    -71.88
    -76.8~-66.5
    3.82
    -18.5~15.7
    0.45
    0.23~0.69
    (86, 36) 17.79
    5.2~23.8
    1.84
    -44.9~16.9
    127.28
    -52.5~307.1
    84.5
    68.9~89.9
    -72.38
    -79.7~-67.4
    5.18
    -18.4~18.6
    0.47
    0.21~0.75
    (86, 37) 17.39
    11.9~23.7
    1.58
    -43.5~11
    124.76
    103.5~290.3
    84.72
    61.4~89.1
    -72.75
    -78.5~-67.1
    5.04
    -26.8~28.4
    0.73
    0.57~0.94
    (86, 42) -169.57
    -176.2~-156.4
    2.9
    -5.9~44.8
    -79.13
    -86~-66
    8.59
    -41~53.7
    81.92
    -97.9~261.5
    80.93
    36.2~89.7
    0.79
    0.5~0.95
    (86, 43) -170.87
    -180.9~-156.8
    7.68
    -2.2~44.7
    -79.97
    -101.1~-17.1
    6.62
    -74.7~79.2
    50.36
    -97.7~228.1
    79.83
    6~89.6
    0.83
    0.47~0.99
    (87, 35) 18.55
    10.7~24.1
    1.12
    -44.5~19.6
    124.22
    -54.8~303.6
    85.84
    67.7~89.8
    -71.52
    -79.4~-66.1
    4
    -21.5~19.4
    0.45
    0.25~0.72
    (87, 36) -161.72
    -168.9~-156.3
    0.76
    -11.5~44.5
    99.53
    -80~279.5
    85.04
    71.9~89.9
    -71.65
    -77.7~-66
    4.9
    -18.7~17.5
    0.52
    0.33~0.73
    (87, 37) -162.16
    -168.7~-157.1
    0.76
    -8.3~44.4
    101.86
    -76.2~281.5
    82.7
    65.6~90
    -72.06
    -78.4~-67.4
    7.26
    -15.7~24
    0.69
    0.49~0.89
    (87, 42) -166.66
    -176.3~-151.1
    4.49
    -6.6~44.9
    -75.71
    -88~-61.1
    11.94
    -30.3~50.5
    83.1
    -95.2~263.1
    77.23
    39.5~89.7
    0.72
    0.41~0.94
    (87, 43) -168.4
    -178.2~-150
    9.08
    -4.3~44.8
    -77.82
    -93~-60.2
    3.6
    -63.7~23.5
    33.57
    -96.2~153
    80.22
    26~88.9
    0.69
    0.38~0.95
    (88, 35) -161.09
    -167.3~-155.6
    1.44
    -14.6~44.3
    32.7
    -147.2~212.7
    88.52
    75.3~89.9
    -71.08
    -77~-65.6
    0.35
    -19.8~9.7
    0.38
    0.19~0.55
    (88, 38) -160.89
    -168.2~-152.5
    1.34
    -8.9~44
    -13
    -192.9~167
    88.42
    -0.7~89.8
    109.09
    37.9~208
    0.84
    -87.4~89.5
    0.84
    0.62~0.99
    (88, 41) -163.6
    -175.6~-147.2
    4.18
    -8.1~44.9
    106.16
    94~122.8
    3.35
    -67.3~82.3
    -22.4
    -202.2~157.5
    84.64
    7.6~90
    0.73
    0.38~0.99
    (88, 43) -168.24
    -180.5~-153.8
    7.31
    -5.1~45
    -77.01
    -90.8~-63.8
    9.56
    -26.7~41.2
    64.93
    -114.6~240.7
    77.93
    48.6~89.9
    0.69
    0.34~0.92
    (89, 35) -160.15
    -334.1~4.6
    8.27
    -80.3~89.2
    29.66
    -150.3~209.6
    81.61
    -7.1~89.9
    -69.95
    -77.9~-62.3
    1.41
    -21.1~10.2
    0.2
    0~0.41
    (89, 36) -157.71
    -171.6~-146.8
    5.66
    -19.9~44.7
    89.07
    63.1~169.2
    75.9
    61.6~80.9
    -66.41
    -71.1~-59.7
    12.87
    8~26.1
    0.34
    0.11~0.58
    (89, 38) -159.67
    -166.7~-151
    1.17
    -12.3~43.9
    98.14
    -81.8~278.1
    84.5
    -3.8~90
    -69.56
    -197.7~-18.3
    5.38
    -79.1~83.7
    0.81
    0.6~1
    (89, 41) -160.75
    -180.1~-138.7
    4.3
    -6.9~45
    108.86
    94.5~132
    5.24
    -15.8~39.4
    -31.61
    -211.6~138.6
    83.21
    50~89.9
    0.67
    0.28~0.75
    注:以上的数值范围为各参数95%置信度的不确定范围.
    下载: 导出CSV

    表 3 

    两次精河地震震源机制解与本研究根据其节面估计滑动角差别及与库松木契克山前断裂的理论震源机制的三维空间旋转角

    Table 3. 

    Focal mechanism solutions of two Jinghe earthquakes and the estimated differences of the slip angle based on their fault planes, and the three-dimensional rotation angle between theoretical focal mechanism of the Kusongmuxieke mountain front fault and that occur on it

    地震 节面Ⅰ 理论滑动角
    (°)
    差值
    (°)
    误差
    (°)
    空间最小旋转角
    (°)
    震源机制解来源
    走向
    (°)
    倾角
    (°)
    滑动角
    (°)
    2017年8月9日精河地震 76 44 80 80.0 0.0 15.8 40.9 中国地震台网中心
    94 50 103 108.7 5.7 14.8 25.9 GCMT
    96 46 99 110.0 11.0 13.8 29.2 中国地震局地球物理研究所
    85 46 85 93.5 8.5 13.2 38.7 中国地震局地震预测研究所大震应急组
    87 67 86 104.0 18.0 23.3 46.0 新疆维吾尔族自治区地震台网中心
    2011年10月16日精河地震 102 46 123 118.5 4.5 13.1 11.7 GCMT
    92 41 105 102 3 9.6 24.3 陈建波等(2012)
    注:理论滑动角为区域应力张量投影到各家机构给出的震源机制的走向和倾角上估算的结果;差值为理论滑动角和震源机制滑动角的差值;误差为根据上述参数由数值方法求得(万永革等,2008).
    下载: 导出CSV
  •  

    Aki K, Richards P G. 1980. Quantitative Seismology:Theory and Methods. San Francisco:W. H. Freeman and Company, 1-557.

     

    Angelier J. 1979. Determination of the mean principal directions of stresses for a given fault population. Tectonophysics, 56(3-4):T17-T26. doi: 10.1016/0040-1951(79)90081-7

     

    Angelier J. 1984. Tectonic analysis of fault slip data sets. Journal of Geophysical Research:Solid Earth, 89(B7):5835-5848. doi: 10.1029/JB089iB07p05835

     

    Chen J B, Shen J, Li J, et al. 2007. Preliminary study on new active characteristics of Kusongmuxieke Mountain front fault in the west segment of north Tianshan. Northwestern Seismological Journal (in Chinese), 29(4):335-340. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdzxb200704008

     

    Chen J B. 2008. Research on seismotectonic features in Xinjiang[Master's thesis] (in Chinese). Lanzhou: Lanzhou Institute of Seismology.

     

    Chen J B, Tan M, Wu G D, et al. 2012. The characteristic of seimic hazard and seismogenic structure of Jinghe earthquake with MS5.0 Xinjiang on Oct 16th. 2011. Inland Earthquake (in Chinese), 26(3):236-241. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nldz201203006

     

    Cui H W, Wan Y G, Huang J C, et al. 2017. The tectonic stress field in the source of the New Britain MS7.4 earthquake of March 2015 and adjacent areas. Chinese Journal of Geophysics (in Chinese), 60(3):985-998, doi:10.6038/cjg20170313.

     

    Dziewonski A M, Chou T A, Woodhouse J H. 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research:Solid Earth, 86 (B4):2825-2852. doi: 10.1029/JB086iB04p02825

     

    Efron B, Tibshirani R. 1986. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, 1(1):54-75. doi: 10.1214/ss/1177013815

     

    Ekström G, Nettles M, Dziewoński A M. 2012. The global CMT Project 2004-2010:Centroid-moment tensors for 13, 017 earthquakes. Physics of the Earth and Planetary Interiors, 200-201:1-9. doi: 10.1016/j.pepi.2012.04.002

     

    Gao G Y, Nie X H, Long H Y. 2010. Discussion on the characteristics of regional tectonic stress field of Xinjiang from 2003 to 2008. Seismology and Geology (in Chinese), 32(1):70-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz201001007

     

    Gephart J W, Forsyth D W. 1984. An improved method for determining the regional stress tensor using earthquake focal mechanism data:Application to the San Fernando earthquake sequence. Journal of Geophysical Research:Solid Earth, 89(B11):9305-9320. doi: 10.1029/JB089iB11p09305

     

    Guiraud M, Laborde O, Philip H. 1989. Characterization of various types of deformation and their corresponding deviatoric stress tensors using microfault analysis. Tectonophysics, 170(3-4):289-316. doi: 10.1016/0040-1951(89)90277-1

     

    Guo X Y, Jiang C S, Wang X S, et al. 2017. Characteristics of small to moderate focal mechanism solutions stress field of the circum-Ordos block. Journal of Geodesy and Geodynamics (in Chinese), 37(7):675-685. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz201707003

     

    Hardebeck J L, Michael A J. 2006. Damped regional-scale stress inversions:Methodology and examples for southern California and the Coalinga aftershock sequence. Journal of Geophysical Research:Solid Earth, 111(B11):B11310, doi:10.1029/2005JB004144.

     

    Huang J C, Wan Y G. 2015. Present tectonic stress field in the capital region of China determined from small and strong earthquake focal mechanisms. Earthquake (in Chinese), 35(1):17-27 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=diz201501003

     

    Huang J C, Wan Y G, Sheng S Z, et al. 2016. Heterogeneity of present-day stress field in the Tonga-Kermadec subduction zone and its geodynamic significance. Chinese Journal of Geophysics (in Chinese), 59(2):578-592, doi:10.6038/cjg20160216.

     

    Kagan Y Y. 1991.3-D rotation of double-couple earthquake sources. Geophysical Journal International, 106(3):709-716. doi: 10.1111/gji.1991.106.issue-3

     

    Li J, Zhou L Q, Long H Y, et al. 2015. Spatial-temporal characteristics of the focal mechanism consistency parameter in Tianshan (within Chinese territory) seismic zone. Seismology and Geology(in Chinese), 37(3):792-803. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz201503010

     

    Li X, Wan Y G, Cui H W, et al. 2016. Tectonic stress field analysis on the source region of the 2015 MW8.3 Chile earthquake. Acta Seismologica Sinica (in Chinese), 38(6):847-853. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhen201606004

     

    Li Y Z, Shen J, Ni X H, et al. 2011. Comprehensive analysis on present tectonic stress field in Urumqi region. Acta Seismologica Sinica (in Chinese), 33(1):15-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhen201101002

     

    Long H Y, Guo G Y, Ni X H, et al. 2008. The focal mechanism solution and stress field inversion of small and moderate earthquakes along middleeastern part of northern Tianshan reion. Earthquake (in Chinese), 28(1):93-99. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=diz200801011

     

    Martínez-Garzón P, Kwiatek G, Ickrath M, et al. 2014. MSATSI:A MATLAB package for stress inversion Combining solid classic methodology, a new simplified user-handling, and a visualization tool. Seismological Research Letters, 85(4):896-904. doi: 10.1785/0220130189

     

    Menke W. 1989. Geophysical Data Analysis:Discrete Inverse Theory. San Diego, California:Academic Press.

     

    Michael A J. 1984. Determination of stress from slip data:Faults and folds. Journal of Geophysical Research:Solid Earth, 89(B13):11517-11526 doi: 10.1029/JB089iB13p11517

     

    Michael A J. 1987. Use of focal mechanisms to determine stress:A control study. Journal of Geophysical Research:Solid Earth, 92(B1):357-368. doi: 10.1029/JB092iB01p00357

     

    Wan Y G, Shen Z K, Lan C X. 2006. Deviatoric stress level estimation according to principle axes rotation of stress field before and after large strike-slip type earthquake and stress drop. Chinese Journal of Geophysics (in Chinese), 49(3):838-844. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200603028

     

    Wan Y G. 2006. Study on determination of stress level by seismic stress drops and the stress axis deflections before and after large earthquake. Acta Seismologica Sinica, 19(5):507-513. doi: 10.1007/s11589-006-0503-8

     

    Wan Y G, Shen Z K, Diao G L, et al. 2008. An algorithm of fault parameter determination using distribution of small earthquakes and parameters of regional stress field and its application to Tangshan earthquake sequence. Chinese Journal of Geophysics (in Chinese), 51(3):793-804. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200803020

     

    Wan Y G. 2008. Study on consistency of focal mechanism of mainshock and that of preshocks in Landers and Hector Mine earthquake in United States. Earthquake Research in China (in Chinese), 24(3):216-225.

     

    Wan Y G, Sheng S Z. 2009. Seismological evidence for the convergence of crustal stress orientation before large earthquakes. Earthquake Science, 22(6):623-629. doi: 10.1007/s11589-009-0623-z

     

    Wan Y G. 2010. Contemporary tectonic stress field in China. Earthquake Science, 23(4):377-386. doi: 10.1007/s11589-010-0735-5

     

    Wan Y G, Sheng S Z, Xu Y R, et al. 2011. Effect of stress ratio and friction coefficient on composite P wave radiation patterns. Chinese Journal of Geophysics (in Chinese), 54(4):994-1001, doi:10.3969/j.issn.0001-5733.2011.04.014.

     

    Wan Y G. 2015. A grid search method for determination of tectonic stress tensor using qualitative and quantitative data of active faults and its application to the Urumqi area. Chinese Journal of Geophysics (in Chinese), 58(9):3144-3156, doi:10.6038/cjg20150911.

     

    Wan Y G, Sheng S Z, Huang J C, et al. 2016. The grid search algorithm of tectonic stress tensor based on focal mechanism data and its application in the boundary zone of China, Vietnam and Laos. Journal of Earth Science, 27(5):777-785. doi: 10.1007/s12583-015-0649-1

     

    Wang S Z, Guo G Y. 1992. Characteristics of recent tectonic stress field in Xinjiang and adjacent regions. Acta Seismologica Sinica (in Chinese), 14(S1):612-620. http://www.cnki.com.cn/Article/CJFDTotal-DZXY200604001.htm

     

    Wang X S, Lü J, Xie Z J, et al. 2015. Focal mechanisms and tectonic stress field in the North-South Seismic Belt of China. Chinese Journal of Geophysics (in Chinese), 58(11):4149-4162, doi:10.6038/cjg20151122.

     

    Wessel P, Smith W H F. 1995. New version of the generic mapping tools. Eos, Transactions American Geophysical Union, 76(33):329. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-95EO00198/

     

    Xie F R, Cui X F, Zhao J T, et al. 2004. Regional division of the recent tectonic stress field in China and adjacent areas. Chinese Journal of Geophysics (in Chinese), 47(4):654-662. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200404016

     

    Xu Z H. 1985. Mean stress field in tangshan aftershock area obtained from focal mechanism data by fitting slip directions. Acta Seismologica Sinica (in Chinese), 7(4):349-362. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB198504000.htm

     

    Xu Z H, Wang S Y, Huang Y R, et al. 1989. The tectonic stress field of Chinese continent deduced from a great number of earthquakes. Acta Geophysica Sinica (in Chinese), 32(6):636-647.

     

    Xu Z H, Wang S Y, Huang Y R, et al. 1992. Tectonic stress field of china inferred from a large number of small earthquakes. Journal of Geophysical Research, 97(B8):11867-11877. doi: 10.1029/91JB00355

     

    Zhang P Z, Deng Q D, Zhang G M, et al. 2003. Active tectonic blocks and strong earthquakes in the continent of China. Science in China Series D:Earth Sciences, 46(S2):13-24. http://cn.bing.com/academic/profile?id=0ea8ebcd56d35b9a449eefe6a10ca86c&encoded=0&v=paper_preview&mkt=zh-cn

     

    Zhang H Y, Xie F R, Cui X F, et al. 2006. Active fault sliding and recent tectonic stress field in the Urumqi area. Earthquake Research in China (in Chinese), 22(3):259-268. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdz200603006

     

    Zhou S Y, Xu Z H, Chen X F, et al. 2001. Analysis on the source characteristics of the 1997 Jiashi swarm, western China. Chinese Journal of Geophysics (in Chinese), 44(5):654-662. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200105009

     

    Zoback M L. 1992. First-and second-order patterns of stress in the lithosphere:The world stress map project. Journal of Geophysical Research:Solid Earth, 97(B8):11703-11728. doi: 10.1029/92JB00132

     

    陈建波, 沈军, 李军等. 2007.北天山西段库松木楔克山前断层新活动特征初探.西北地震学报, 29(4):335-340. doi: 10.3969/j.issn.1000-0844.2007.04.008

     

    陈建波. 2008.新疆地震构造特征研究[硕士论文].兰州: 中国地震局兰州地震研究所.

     

    陈建波, 谭明, 吴国栋等. 2012.2011年10月16日新疆精河县5.0级地震震害特征及发震构造.内陆地震, 26(3):236-241. http://d.old.wanfangdata.com.cn/Periodical/nldz201203006

     

    崔华伟, 万永革, 黄骥超等. 2017.2015年3月新不列颠MS7.4地震震源及邻区构造应力场特征.地球物理学报, 60(3):985-998, doi:10.6038/cjg20170313. http://www.geophy.cn//CN/abstract/abstract13502.shtml

     

    高国英, 聂晓红, 龙海英. 2010.2003-2008年新疆区域构造应力场特征探讨.地震地质, 32(1):70-79. doi: 10.3969/j.issn.0253-4967.2010.01.007

     

    郭祥云, 蒋长胜, 王晓山等. 2017.鄂尔多斯块体周缘中小地震震源机制及应力场特征.大地测量与地球动力学, 37(7):675-685. http://d.old.wanfangdata.com.cn/Periodical/dkxbydz201707003

     

    黄骥超, 万永革. 2015.利用小震与强震震源机制解反演首都圈现今构造应力场.地震, 35(1):17-27. http://d.old.wanfangdata.com.cn/Periodical/diz201501003

     

    黄骥超, 万永革, 盛书中等. 2016.汤加-克马德克俯冲带现今非均匀应力场特征及其动力学意义.地球物理学报, 59(2):578-592, doi:10.6038/cjg20160216. http://www.geophy.cn//CN/abstract/abstract12578.shtml

     

    李金, 周龙泉, 龙海英等. 2015.天山地震带(中国境内)震源机制一致性参数的时空特征.地震地质, 37(3):792-803. doi: 10.3969/j.issn.0253-4967.2015.03.010

     

    李祥, 万永革, 崔华伟等. 2016.2015年智利MW8.3地震震源区构造应力场分析.地震学报, 38(6):847-853. http://d.old.wanfangdata.com.cn/Periodical/dizhen201606004

     

    李莹甄, 沈军, 聂晓红等. 2011.乌鲁木齐地区现今构造应力场综合分析.地震学报, 33(1):15-27. http://d.old.wanfangdata.com.cn/Periodical/dizhen201101002

     

    龙海英, 高国英, 聂晓红等. 2008.北天山中东段中小地震震源机制解及应力场反演.地震, 28(1):93-99. doi: 10.3969/j.issn.1000-3274.2008.01.011

     

    万永革, 沈正康, 兰从欣. 2006.根据走滑大地震前后应力轴偏转和应力降求取偏应力量值的研究.地球物理学报, 49(3):838-844. doi: 10.3321/j.issn:0001-5733.2006.03.028 http://www.geophy.cn//CN/abstract/abstract54.shtml

     

    万永革. 2008.美国Landers地震和Hector Mine地震前震源机制与主震机制一致现象的研究.中国地震, 24(3):216-225. doi: 10.3969/j.issn.1001-4683.2008.03.003

     

    万永革, 沈正康, 刁桂苓等. 2008.利用小震分布和区域应力场确定大震断层面参数方法及其在唐山地震序列中的应用.地球物理学报, 51(3):793-804. doi: 10.3321/j.issn:0001-5733.2008.03.020 http://www.geophy.cn//CN/abstract/abstract403.shtml

     

    万永革, 盛书中, 许雅儒等. 2011.不同应力状态和摩擦系数对综合P波辐射花样影响的模拟研究.地球物理学报, 54(4):994-1001, doi:10.3969/j.issn.0001-5733.2011.04.014. http://www.geophy.cn//CN/abstract/abstract7874.shtml

     

    万永革. 2015.联合采用定性和定量断层资料的应力张量反演方法及在乌鲁木齐地区的应用.地球物理学报, 58(9):3144-3156, doi:10.6038/cjg20150911. http://www.geophy.cn//CN/abstract/abstract11792.shtml

     

    王盛泽, 高国英. 1992.新疆及其邻近地区现代构造应力场的区域特征.地震学报, 14(S1):612-620.

     

    王晓山, 吕坚, 谢祖军等. 2015.南北地震带震源机制解与构造应力场特征.地球物理学报, 58(11):4149-4162, doi:10.6038/cjg20151122. http://www.geophy.cn//CN/abstract/abstract11987.shtml

     

    谢富仁, 崔效锋, 赵建涛等. 2004.中国大陆及邻区现代构造应力场分区.地球物理学报, 47(4):654-662. doi: 10.3321/j.issn:0001-5733.2004.04.016 http://www.geophy.cn//CN/abstract/abstract1595.shtml

     

    许忠淮. 1985.用滑动方向拟合法反演唐山余震区的平均应力场.地震学报, 7(4):349-362. http://www.cnki.com.cn/Article/CJFDTotal-DZXB198504000.htm

     

    许忠淮, 王素云, 黄雨蕊等. 1989.由大量的地震资料推断的我国大陆构造应力场.地球物理学报, 32(6):636-647. doi: 10.3321/j.issn:0001-5733.1989.06.004 http://www.geophy.cn//CN/abstract/abstract4734.shtml

     

    张红艳, 谢富仁, 崔效锋等. 2006.乌鲁木齐地区活动断层滑动与现代构造应力场.中国地震, 22(3):259-268. doi: 10.3969/j.issn.1001-4683.2006.03.006

     

    张培震, 邓起东, 张国民等. 2003.中国大陆的强震活动与活动地块.中国科学(D辑), 33(S1):12-20. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd2003z1002

     

    周仕勇, 许忠淮, 陈晓非等. 2001.伽师强震群震源特征及震源机制力学成因分析.地球物理学报, 44(5):654-662. doi: 10.3321/j.issn:0001-5733.2001.05.009 http://www.geophy.cn//CN/abstract/abstract3620.shtml

  • 加载中

(3)

(3)

计量
  • 文章访问数:  613
  • PDF下载数:  336
  • 施引文献:  0
出版历程
收稿日期:  2017-11-13
修回日期:  2018-08-30
上线日期:  2019-04-05

目录