2017年九寨沟MS7.0地震对周围地区的静态应力影响

靳志同, 万永革, 刘兆才, 黄骥超, 李瑶, 杨帆. 2019. 2017年九寨沟MS7.0地震对周围地区的静态应力影响. 地球物理学报, 62(4): 1282-1299, doi: 10.6038/cjg2019L0675
引用本文: 靳志同, 万永革, 刘兆才, 黄骥超, 李瑶, 杨帆. 2019. 2017年九寨沟MS7.0地震对周围地区的静态应力影响. 地球物理学报, 62(4): 1282-1299, doi: 10.6038/cjg2019L0675
JIN ZhiTong, WAN YongGe, LIU ZhaoCai, HUANG JiChao, LI Yao, YANG Fan. 2019. The static stress triggering influences of the 2017 MS7.0 Jiuzhaigou earthquake on neighboring areas. Chinese Journal of Geophysics (in Chinese), 62(4): 1282-1299, doi: 10.6038/cjg2019L0675
Citation: JIN ZhiTong, WAN YongGe, LIU ZhaoCai, HUANG JiChao, LI Yao, YANG Fan. 2019. The static stress triggering influences of the 2017 MS7.0 Jiuzhaigou earthquake on neighboring areas. Chinese Journal of Geophysics (in Chinese), 62(4): 1282-1299, doi: 10.6038/cjg2019L0675

2017年九寨沟MS7.0地震对周围地区的静态应力影响

  • 基金项目:

    河北省廊坊市科技计划项目(2016011011)、国家自然科学基金(41674055)、河北省地震局地震科技星火计划项目(DZ20170109001)联合资助

详细信息
    作者简介:

    靳志同, 男, 1984年生, 2010年毕业于中国矿业大学(北京)应用数学专业, 中国地震局地球物理研究所2015级在读博士研究生, 讲师, 主要从事地震学与地球动力学、应用数学方面的研究.E-mail:jinzhitong@cidp.edu.cn

    通讯作者: 万永革, 研究员, 主要从事地震学、地球动力学的研究.E-mail:wanyg217217@vip.sina.com
  • 中图分类号: P315;P313

The static stress triggering influences of the 2017 MS7.0 Jiuzhaigou earthquake on neighboring areas

More Information
  • 基于九寨沟MS7.0地震的破裂模型及均匀弹性半空间模型,本文计算了该地震在周围主要活动断层上产生的库仑应力变化、在周围地区产生的应力场和位移场和同震库仑应力变化对余震的触发.结果表明:(1)九寨沟地震造成虎牙断裂中段库仑破裂应力有较大增加,已经超过0.01 MPa的阈值,虎牙断裂北段、塔藏断裂中段和岷江断裂北段北部的库仑破裂应力有较大降低,因此尤其要注意虎牙断裂中段的危险性.(2)水平面应力场在该地震震中东西两侧增加(拉张),张应力起主要作用.在震中南北两侧降低(压缩),压应力起主要作用.从水平主压和主张应力方向来看,均呈现出条形磁铁的磁场形态.从剖面上的应力场来看,在上盘的面膨胀区域内,大部分点的主张应力方向与地表是垂直的,在其他区域内,主张应力和主压应力均以震中为中心,向外呈辐射状.(3)从地表水平位移场来看,震中东西两侧物质朝震中位置汇聚,南北两侧物质向外流出,在震中处的最大水平位移量达43 mm.从地表垂直位移场来看,震中南北两侧出现明显的隆升,隆升最大值达56.8 mm.震中东西两侧出现明显的沉降,沉降最大值达74.5 mm.从剖面的位移场来看,九寨沟地震为左旋走滑地震,且有一定的正断成分.由分析可以推测该断层破裂在大致22~26 km的深度上就截止了.并推测下盘物质运动的动力来自震源北东东方向(四川块体)深度在6~30 km的下盘下层物质,上盘物质运动的动力来自震源北西西方向(巴颜喀拉块体)深度在0~6 km的上盘上层物质.(4)通过计算不同深度上主震对余震的触发作用可知,主震后的最大余震受到了主震的触发作用,多数其他余震也受到主震的触发作用.主震的发生促使了库仑应力增加地区余震的发生,抑制了一部分库仑应力减少地区余震的发生.

  • 加载中
  • 图 1 

    九寨沟地震11 km深度上在周围断层面上产生的库仑破裂应力变化

    Figure 1. 

    Coulomb stress changes on the fault planes and slip directions of the surrounding active faults by the Jiuzhaigou earthquake at the depth of 11 km

    图 2 

    九寨沟地震产生的应力场

    Figure 2. 

    The stress field generated by the Jiuzhaigou earthquake

    图 3 

    九寨沟地震在地表产生的位移场

    Figure 3. 

    The displacement field generated by the Jiuzhaigou earthquake

    图 4 

    九寨沟地震产生的沿断层走向的剖面AA′上的位移场

    Figure 4. 

    The displacement field on the profile section AA′ generated by the Jiuzhaigou earthquake

    图 5 

    九寨沟地震产生的沿断层倾向的剖面BB′上的位移场

    Figure 5. 

    The displacement field on the profile section BB′ generated by the Jiuzhaigou earthquake

    图 6 

    主震分别在四个深度上产生的库仑破裂应力分布

    Figure 6. 

    Static Coulomb stress distribution at four depths generated by main shock

    表 1 

    本研究所用的地质断层参数及正应力、剪应力和库仑破裂应力变化

    Table 1. 

    Fault segment parameters and their calculated normal stress, shear stress and Coulomb failure stress changes

    断层面 分段数 倾角
    (°)
    倾向 性质 滑动角(°) 剪应力(Pa) 正应力(Pa) ΔCFS(Pa) 平均
    ΔCFS(Pa)
    虎牙断裂中段和南段 4 84 西 走滑 -19.5 410~20270 731~13550 747~26690 9750
    虎牙断裂北段 3 84 西 走滑 -19.5 -182500~-73840 -363900~200900 -268300~-59690 -143633
    塔藏断裂西段和东段西部 3 70 北东 左旋兼逆冲 0 -13980~4667 1574~45730 4309~6814 5473
    塔藏断裂中段和东段东部 2 70 北东 左旋兼逆冲 0 -67540~-13190 -53430~4467 -88910~-11410 -50160
    岷江断裂南段和北段南部 2 75 西 左旋兼走滑 45 -14380~84 151~42980 145~2809 1477
    岷江断裂中段和北段北部 4 75 西 左旋兼走滑 45 -19190~2071 -18770~1817 -18460~-395 -6984
    龙门山断裂南段 5 43 北西 逆冲 90 19~454 -304~17 25~332 144
    龙门山断裂中段 2 43 北西 逆冲 90 -689~-329 195~379 -250~-537 -394
    龙门山断裂北段 5 90 北西 逆冲 180 -296~-2 -15~272 -187~-7 -78
    东昆仑断裂段中部 4 70 左旋兼走滑 15 52~1707 -31~37 59~1696 533
    东昆仑断裂东段东部和西部 2 70 左旋兼走滑 15 -3~-2775 -3469~1 -4162~-3 -2083
    西秦岭北缘中段 4 60 南西 左旋兼走滑 15 10~466 -408~43 28~303 182
    西秦岭北缘西段和东段 4 60 南西 左旋兼走滑 15 -299~175 -742~28 -479~-16 -224
    龙日坝断裂中段和西段 2 90 南东 走滑 180 31~32 42~137 48~87 67
    龙日坝断裂东段 2 90 南东 走滑 180 -3111~-290 -750~425 -3411~-120 -1766
    秦岭南缘断裂 3 75 逆冲 80 -80~48 -549~17 -171~-73 -88
    秦岭北缘断裂西段 1 75 南西 左旋兼走滑 80 -26 25 -16 -16
    鲜水河断裂中段 3 90 北东 左旋兼走滑 0 -1~44 -56~20 7~26 18
    鲜水河断裂南段 4 90 北东 左旋兼走滑 0 -42~20 -121~-68 -70~-26 -55
    日月山断裂南段 2 75 北东 走滑 180 86 -41 69 69
    日月山断裂北段 1 75 北东 走滑 180 -9~7 -37~-20 -17~-8 -12
    海原断裂 3 70 南西 左旋兼走滑 15 -37~-31 -116~-84 -77~-66 -73
    陇县—宝鸡断裂北段 1 45 南西 逆冲 90 57 -39 42 42
    陇县—宝鸡断裂南段 1 45 南西 逆冲 90 -8 7 -5 -5
    青海南山—循化南山断裂 5 90 南西 逆冲兼走滑 45 -15~32 17~78 11~42 26
    下载: 导出CSV

    表 2 

    GNSS同震位移(王阅兵等,2018)及本文相应站点处的位移

    Table 2. 

    Co-seismic displacements from GNSS (Wang et al., 2018) and corresponding sites of this paper

    台站名称 经度
    (°)
    纬度
    (°)
    EW
    (mm)
    NS
    (mm)
    Sig_EW Sig_NS EW
    (mm)
    NS
    (mm)
    王阅兵等(2018) 本文结果
    舟曲站 104.2 33.8 0.4 3.6 1.2 0.8 2.91 6.59
    九寨沟站 104.2 33.2 -9.8 3.3 1.5 0.7 -11.30 3.19
    松潘站 103.6 32.6 -1.8 -7.7 0.7 0.6 -2.30 -7.06
    下载: 导出CSV

    表 3 

    九寨沟主震对余震应力触发统计

    Table 3. 

    Statistics of the stress triggering of aftershocks by the Jiuzhaigou earthquake

    序号 计算库仑破裂应力分布所选深度(km) 余震深度h
    (km)
    余震个数 余震处库仑应力变化为正的余震个数 余震处库仑应力变化为负的余震个数 主震对余震的触发比例
    1 3.5 0 < h < 7 608 320 288 52.6%
    2 10 7≤h < 13 1000 581 419 58.1%
    3 14.9 13≤h < 17 202 151 51 74.8%
    4 19.2 17≤h < 24 57 33 24 57.9%
    合计 0 < h < 24 1867 1085 782 58.1%
    下载: 导出CSV
  •  

    An W P, Zhao J Q, Yan X B, et al. 2008. Tectonic deformation of lacustrine sediments in Qiangyang on the Minjiang fault zone and ancient earthquake.Seismology and Geology (in Chinese), 30(4):980-988. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz200804014

     

    Bassin C, Laske G, Masters G. 2000. The current limits of resolution for surface wave tomography in North America. EOS, Transactions American Geophysical Union, 81, F897. http://cn.bing.com/academic/profile?id=915c57ab387a570a7a1b5bcd123c8036&encoded=0&v=paper_preview&mkt=zh-cn

     

    Chen Y T, Lin B H, Lin Z Y, et al. 1975. The focal mechanism of the 1966 Hsingtai earthquake as inferred from the ground deformation observations.Chinese Journal of Geophysics (in Chinese), 18(3):164-182. http://en.cnki.com.cn/article_en/cjfdtotal-dqwx197503002.htm

     

    Chinnery M A. 1963. The stress changes that accompany strike-slip faulting.Bulletin of the Seismological Society of America, 53(5):921-932. http://cn.bing.com/academic/profile?id=be1e67b5ac5b12d741b5be816b0d7b02&encoded=0&v=paper_preview&mkt=zh-cn

     

    Cotton F, Coutant O. 1997. Dynamic stress variations due to shear faults in a plane-layered medium.Geophysical Journal International, 128(3):676-688. doi: 10.1111/gji.1997.128.issue-3

     

    Deng Q D, Zhang P Z, Ran Y K, et al. 2002. Basic characteristics of active tectonics of China. Science in China Series D:Earth Sciences, 46(4):356-372. http://link.springer.com/article/10.1360/03yd9032

     

    Deng Q D, Gao X, Chen G H, et al. 2010. Recent tectonic activity of Bayankala fault-block and the Kunlun-Wenchuan earthquake series of the Tibetan Plateau. Earth Science Frontiers (in Chinese), 17(5):163-178. http://d.old.wanfangdata.com.cn/Periodical/dxqy201005015

     

    Du F, Wen X Z, Zhang P Z, et al. 2009. Interseismic deformation across the Longmenshan fault zone before the 2008 M8.0 Wenchuan earthquake. Chinese Journal of Geophysics (in Chinese), 52(11):2729-2738, doi:10.3969/j.issn.0001-5733.2009.11.007.

     

    Du J J, Ma Y S, Yin C M, et al. 2013. Activity characteristics of faults in the triangle structure area in northern part of Longmenshan in the Shaanxi-Gansu-Sichuan junction. Acta Seismologica Sinica (in Chinese), 35(4):520-533. http://en.cnki.com.cn/Article_en/CJFDTotal-DZXB201304007.htm

     

    Fang L H, Wu J P, Su J R, et al. 2018. Relocation of mainshock and aftershock sequence of the MS7.0 Sichuan Jiuzhaigou earthquake. Chinese Science Bulletin (in Chinese), 63(7):649-662. doi: 10.1360/N972017-01184

     

    Freed A M. 2005. Earthquake triggering by static, dynamic, and postseismic stress transfer. Annual Review of Earth and Planetary Sciences, 33:335-367. doi: 10.1146/annurev.earth.33.092203.122505

     

    Fu J D, Ren J W, Zhang J L, et al. 2012. Research on late Quaternary paleoearthquake on Tazang Fault on the eastern section of the Kunlun active fault. Quaternary Sciences (in Chinese), 32(3):473-483. http://en.cnki.com.cn/Article_en/CJFDTotal-DSJJ201203015.htm

     

    Gao X, Deng Q D. 2013. Activity analysis of large earthquakes in boundary faults around the Bayankala faulting block. Acta Geologica Sinica (in Chinese), 87(1):9-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201301002

     

    Harris R A. 1998. Introduction to special section:Stress triggers, stress shadows, and implications for seismic hazard. Journal of Geophysical Research, 103(B10):24347-24358. doi: 10.1029/98JB01576

     

    Harris R A. 2000. Earthquake stress triggers, stress shadows, and seismic hazard. Current Science, 79(9):1215-1225. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ024441496/

     

    He J K, Chéry J. 2008. Slip rates of the Altyn Tagh, Kunlun and Karakorum faults (Tibet) from 3D mechanical modeling. Earth and Planetary Science Letters, 274(1-2):50-58. doi: 10.1016/j.epsl.2008.06.049

     

    Ji L Y, Liu C J, Xu J, et al. 2017. InSAR observation and inversion of the seismogenic fault for the 2017 Jiuzhaigou MS7.0 earthquake in China. Chinese Journal of Geophysics (in Chinese), 60(10):4069-4082, doi:10.6038/cjg20171032.

     

    Ji C, Wald D J, Helmberger D V. 2002. Source description of the 1999 Hector Mine, California earthquake, part Ⅰ:Wavelet domain inversion theory and resolution analysis. Bulletin of the Seismological Society of America, 92 (4):1192-1207. doi: 10.1785/0120000916

     

    Jin Z T, Wan Y G, Huang J C, et al. 2017. The static stress triggering influences of the 2015 MW6.4 Pishan, Xinjiang earthquake on the neighboring areas. Seismology and Geology (in Chinese), 39(5):1017-1029. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ201705011.htm

     

    King G C P, Stein R S, Lin J. 1994. Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3):935-953. http://d.old.wanfangdata.com.cn/Periodical/dqkx-e201001004

     

    Liu G Z. 2014. Tectonic deformation and major earthquakes on the boundary faults of Bayan Har block (in Chinese). Beijing: Institute of Geology, China Earthquake Administration.

     

    McCloskey J, Nalbant S S, Steacy S. 2005. Earthquake risk from co-seismic stress. Nature, 434(7031):291. doi: 10.1038/434291a

     

    Okada Y. 1992. Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2):1018-1040. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=75/4/1135

     

    Parsons T, Ji C, Kirby E. 2008. Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin. Nature, 454(7203):509-510. doi: 10.1038/nature07177

     

    Qian H, Ma S H, Gong Y. 1995. Discussions on the Minjiang Fault. Earthquake Research in China (in Chinese), 11(2):140-146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201704001

     

    Qian H, Zhou R J, Ma S H, et al. 1999. South segment of Minjiang fault and Diexi earthquake in 1993. Earthquake Research in China (in Chinese), 15(4):333-338. http://d.wanfangdata.com.cn/Periodical/zgdzyj-e200002005

     

    Ren J W, Wang M. 2005. GPS measured crustal deformation of the MS8.1 Kunlun earthquake on November 14th 2001 in QingHai-XiZang Plateau. Quaternary Sciences (in Chinese), 25(1):34-44. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200501005.htm

     

    Robinson R, Zhou S Y. 2005. Stress interactions within the Tangshan, China, earthquake sequence of 1976. Bulletin of the Seismological Society of America, 95(6):2501-2505. doi: 10.1785/0120050091

     

    Shan B, Zheng Y, Liu C L, et al. 2017. Coseismic Coulomb failure stress changes caused by the 2017 M7.0 Jiuzhaigou earthquake, and its relationship with the 2008 Wenchuan earthquake. Science China Earth Sciences, 60(12):2181-2189, doi:10.1007/s11430-017-9125-2.

     

    Shao Z G, Zhou L Q, Jiang C S, et al. 2010. The impact of Wenchuan MS8.0 earthquake on the seismic activity of surrounding faults. Chinese Journal of Geophysics(in Chinese), 53(8):1784-1795, doi:10.3969/j.issn.0001-5733.2010.08.004.

     

    Shen Z K, Wan Y G, Gan W J, et al. 2003a. Viscoelastic triggering among large earthquakes along the east Kunlun fault system. Chinese Journal of Geophysics (in Chinese), 46(6):786-795. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200306010

     

    Sheng S Z, Wan Y G, Jiang C S, et al. 2015. Preliminary study on the static stress triggering effects on China mainland with the 2015 Nepal MS8.1 earthquake. Chinese Journal of Geophysics (in Chinese), 58(5):1834-1842, doi:10.6038/cjg20150534.

     

    Sobel E R, Dumitru T A. 1997. Thrusting and exhumation around the margins of the western Tarim basin during the India-Asia collision.Journal of Geophysical Research, 102(B3):5043-5063. doi: 10.1029/96JB03267

     

    Stein R S, Lisowski M. 1983. The 1979 Homestead Valley earthquake sequence, California:Control of aftershocks and postseismic deformation.Journal of Geophysical Research, 88(B8):6477-6490. doi: 10.1029/JB088iB08p06477

     

    Stein R S. 1999. The role of stress transfer in earthquake occurrence.Nature, 402(6762):605-609. doi: 10.1038/45144

     

    Tang Z M, Han T L. 1990. Structural features and tentative division of the terranes in Qinghai-Xizang Plateau. Bulletin of the Chinese Academy of Geological Sciences (in Chinese), (21):121-128. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB199002011.htm

     

    Teng J W, Zhang Z J, Yang D H, et al. 1996. The study of geophysical criterion for dividing terranes in Qinghai-Xizang plateau. Chinese Journal of Geophysics (in Chinese), 39(5):629-641. http://www.cqvip.com/Main/Detail.aspx?id=2247654

     

    Wan Y G, Wu Z L, Zhou G W, et al. 2000. "Stress triggering" between different rupture events in several earthquakes. Acta Seismologica Sinica (in Chinese), 22(6):568-576. http://www.cqvip.com/QK/86256X/200006/1004400616.html

     

    Wan Y G, Wu Z L, Zhou G W. 2003. Small stress change triggering a big earthquake:A test of the critical point hypothesis for earthquakes. Chinese Physics Letters, 20(9):1452-1455. doi: 10.1088/0256-307X/20/9/312

     

    Wan Y G, Wu Z L, Zhou G W. 2004. Focal mechanism dependence of static stress triggering of earthquakes.Tectonophysics, 390(1-4):235-243. doi: 10.1016/j.tecto.2004.03.028

     

    Wan Y G, Shen Z K, Zeng Y H, et al. 2007. Evolution of cumulative Coulomb failure stress in Northeastern Qinghai-Xizang (Tibetan) plateau and its effect on large earthquake occurrence. Acta Seismologica Sinica (in Chinese), 29(2):115-129. http://www.cqvip.com/QK/71135X/201107/23993012.html

     

    Wan Y G, Shen Z K, Zeng Y H, et al. 2008. Study on visco-elastic stress triggering model of the 1976 Tangshan earthquake sequence. Acta Seismologica Sinica (in Chinese), 30(6):581-593. http://www.cqvip.com/QK/86256X/200806/1003923492.html

     

    Wan Y G, Shen Z K, Sheng S Z, et al. 2009. The influence of 2008 Wenchuan earthquake on surrounding faults. Acta Seismologica Sinica (in Chinese), 31(2):128-139. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB200902002.htm

     

    Wan Y G, Shen Z K, Sheng S Z, et al. 2010. The mechanical effects of the 2008 MS7.3 Yutian, Xinjiang earthquake on the neighboring faults and its tectonic origin of normal faulting mechanism. Chinese Journal of Geophysics (in Chinese), 53(2):280-289, doi:10.3969/j.issn.0001-5733.2010.02.006.

     

    Wan Y G, Sheng S Z, Li X, et al. 2015. Stress influence of the 2015 Nepal earthquake sequence on Chinese mainland. Chinese Journal of Geophysics (in Chinese), 58(11):4277-4286, doi:10.6038/cjg20151132.

     

    Wang J J, Xu C J. 2017. Coseismic Coulomb stress changes associated with the 2017 MW6.5 Jiuzhaigou earthquake (China) and its impacts on surrounding major faults. Chinese Journal of Geophysics (in Chinese), 60(11):4398-4420, doi:10.6038/cjg20171127.

     

    Wang Y B, Gan W J, Chen W T, et al. 2018. Coseismic displacements of the 2017 Jiuzhaigou M7.0 earthquake observed by GNSS:Preliminary results. Chinese Journal of Geophysics (in Chinese), 61(1):161-170, doi:10.6038/cjg2018L0611.

     

    Wen X Z, Du F, Zhang P Z, et al. 2011. Correlation of major earthquake sequences on the northern and eastern boundaries of the Bayan Har block, and its relation to the 2008 Wenchuan earthquake. Chinese Journal of Geophysics (in Chinese), 54(3):706-716, doi:10.3969/j.issn.0001-5733.2011.03.010.

     

    Wessel P, Smith W H F. 1995. New version of the generic mapping tools. EOS, Transactions American Geophysical Union, 76(33):329. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-95EO00198/

     

    Xu X W, Chen W B, Yu G H, et al. 2002. Characteristic features of the surface ruptures of the Hoh Sai Hu (Kunlunshan) Earthquake (MS8.1) Northern Tibetan Plateau, China. Seismology and Geology (in Chinese), 24(1):1-13. http://gji.oxfordjournals.org/external-ref?access_num=10.1785/gssrl.73.6.884&link_type=DOI

     

    Xu X W, Chen G H, Wang Q X, et al. 2017. Discussion on seismogenic structure of Jiuzhaigou earthquake and its implication for current strain state in the southeastern Qinghai-Tibet Plateau. Chinese Journal of Geophysics (in Chinese), 60(10):4018-4026, doi:10.6038/cjg20171028.

     

    Yi G X, Long F, Liang M J, et al. 2017. Focal mechanism solutions and seismogenic structure of the 8 August 2017 M7.0 Jiuzhaigou earthquake and its aftershocks, northern Sichuan. Chinese Journal of Geophysics (in Chinese), 60(10):4083-4097, doi:10.6038/cjg20171033.

     

    Zhang J L, Ren J W, Fu J D, et al. 2012. Earthquake rupture features and tectonic significance of the Tazang fault in the eastern part of the east Kunlun fault zones. Earthquake (in Chinese), 32(1):1-16. http://www.cnki.com.cn/Article/CJFDTotal-ZDZW201204002.htm

     

    Zhang X, Feng W P, Xu L S, et al. 2017. The source-process inversion and the intensity estimation of the 2017 MS7.0 Jiuzhaigou earthquake. Chinese Journal of Geophysics (in Chinese), 60(10):4105-4116, doi:10.6038/cjg2017035.

     

    Zhou R J, Pu X H, He Y L, et al. 2000. Recent activity of Minjiang fault zone, uplift of Minshan block and their relationship with seismicity of Sichuan. Seismology and Geology (in Chinese), 22(3):285-294. http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ200003009.htm

     

    安卫平, 赵晋泉, 闫小兵等. 2008.岷江断裂羌阳桥一带古堰塞湖沉积及构造变形与古地震.地震地质, 30(4):980-988. doi: 10.3969/j.issn.0253-4967.2008.04.014

     

    陈运泰, 林邦慧, 林中洋等. 1975.根据地面形变的观测研究1966年邢台地震的震源过程.地球物理学报, 18(3):164-182. http://www.geophy.cn//CN/abstract/abstract5512.shtml

     

    邓起东, 张培震, 冉勇康等. 2002.中国活动构造基本特征.中国科学(D辑), 32(12):1020-1030. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200212007

     

    邓起东, 高翔, 陈桂华等. 2010.青藏高原昆仑-汶川地震系列与巴颜喀喇断块的最新活动.地学前缘, 17(5):163-178. http://d.old.wanfangdata.com.cn/Periodical/dxqy201005015

     

    杜方, 闻学泽, 张培震等. 2009.2008年汶川8.0级地震前横跨龙门山断裂带的震间形变.地球物理学报, 52(11):2729-2738, doi:10.3969/j.issn.0001-5733.2009.11.007. http://www.geophy.cn//CN/abstract/abstract1227.shtml

     

    杜建军, 马寅生, 尹成明等. 2013.龙门山北部陕甘川交界三角构造区断裂活动特征研究.地震学报, 35(4):520-533. doi: 10.3969/j.issn.0253-3782.2013.04.007

     

    房立华, 吴建平, 苏金蓉等. 2018.四川九寨沟MS7.0地震主震及其余震序列精定位.科学通报, 63(7):649-662. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201807007

     

    付俊东, 任金卫, 张军龙等. 2012.东昆仑断裂带东段塔藏断裂晚第四纪古地震研究.第四纪研究, 32(3):473-483. doi: 10.3969/j.issn.1001-7410.2012.03.13

     

    高翔, 邓起东. 2013.巴颜喀喇断块边界断裂强震活动分析.地质学报, 87(1):9-19. doi: 10.3969/j.issn.0001-5717.2013.01.002

     

    季灵运, 刘传金, 徐晶等. 2017.九寨沟MS7.0地震的InSAR观测及发震构造分析.地球物理学报, 60(10):4069-4082, doi:10.6038/cjg20171032. http://www.geophy.cn//CN/abstract/abstract14069.shtml

     

    靳志同, 万永革, 黄骥超等. 2017.2015年新疆皮山MW6.4地震对周围地区的静态应力影响.地震地质, 39(5):1017-1029. doi: 10.3969/j.issn.0253-4967.2017.05.011

     

    刘冠中. 2014.巴颜喀拉块体边界断裂的跨断层形变与地震活动[博士论文].北京: 中国地震局地质研究所.

     

    钱洪, 马声浩, 龚宇. 1995.关于岷江断裂若干问题的讨论.中国地震, 11(2):140-146. http://www.cnki.com.cn/Article/CJFDTotal-ZGZD502.006.htm

     

    钱洪, 周荣军, 马声浩等. 1999.岷江断裂南段与1933年叠溪地震研究.中国地震, 15(4):333-338. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD199904004.htm

     

    任金卫, 王敏.2005. GPS观测的2001年昆仑山口西MS8.1地震地壳变形.第四纪研究, 25(1):34-44. doi: 10.3321/j.issn:1001-7410.2005.01.006

     

    单斌, 郑勇, 刘成利等. 2017.2017年M7.0级九寨沟地震同震库仑应力变化及其与2008年汶川地震的关系.中国科学:地球科学, 47(11):1329-1338, doi:10.1360/N072017-00268.

     

    邵志刚, 周龙泉, 蒋长胜等.2010.2008年汶川MS8.0地震对周边断层地震活动的影响.地球物理学报, 53(8):1784-1795, doi:10.3969/j.issn.0001-5733.2010.08.004. http://www.geophy.cn//CN/abstract/abstract3225.shtml

     

    沈正康, 万永革, 甘卫军等. 2003a.东昆仑活动断裂带大地震之间的黏弹性应力触发研究.地球物理学报, 46(6):786-795. http://www.geophy.cn//CN/abstract/abstract509.shtml

     

    盛书中, 万永革, 蒋长胜等. 2015.2015年尼泊尔MS8.1强震对中国大陆静态应力触发影响的初探.地球物理学报, 58(5):1834-1842, doi:10.6038/cjg20150534. http://www.geophy.cn//CN/abstract/abstract11514.shtml

     

    唐哲明, 韩同林. 1990.青藏高原地体的初步划分及构造特征简述.中国地质科学院院报, (21):121-128. http://www.cnki.com.cn/Article/CJFDTotal-DQXB199002011.htm

     

    滕吉文, 张忠杰, 杨顶辉等. 1996.青藏高原地体划分的地球物理标志研究.地球物理学报, 39(5):629-641. doi: 10.3321/j.issn:0001-5733.1996.05.006 http://www.geophy.cn//CN/abstract/abstract4086.shtml

     

    万永革, 吴忠良, 周公威等. 2000.几次复杂地震中不同破裂事件之间的"应力触发"问题.地震学报, 22(6):568-576. doi: 10.3321/j.issn:0253-3782.2000.06.002

     

    万永革, 沈正康, 曾跃华等. 2007.青藏高原东北部的库仑应力积累演化对大地震发生的影响.地震学报, 29(2):115-129. doi: 10.3321/j.issn:0253-3782.2007.02.001

     

    万永革, 沈正康, 曾跃华等. 2008.唐山地震序列应力触发的粘弹性力学模型研究.地震学报, 30(6):581-593. doi: 10.3321/j.issn:0253-3782.2008.06.004

     

    万永革, 沈正康, 盛书中等. 2009.2008年汶川大地震对周围断层的影响.地震学报, 31(2):128-139. doi: 10.3321/j.issn:0253-3782.2009.02.002

     

    万永革, 沈正康, 盛书中等. 2010.2008年新疆于田7.3级地震对周围断层的影响及其正断层机制的区域构造解释.地球物理学报, 53(2):280-289, doi:10.3969/j.issn.0001-5733.2010.02.006. http://www.geophy.cn//CN/abstract/abstract1267.shtml

     

    万永革, 盛书中, 李祥等. 2015.2015年尼泊尔强震序列对中国大陆的应力影响.地球物理学报, 58(11):4277-4286, doi:10.6038/cjg20151132. http://www.geophy.cn//CN/abstract/abstract11997.shtml

     

    汪建军, 许才军. 2017.2017年MW6.5九寨沟地震激发的同震库仑应力变化及其对周边断层的影响.地球物理学报, 60(11):4398-4420, doi:10.6038/cjg20171127. http://www.geophy.cn//CN/abstract/abstract14184.shtml

     

    王阅兵, 甘卫军, 陈为涛等. 2018. GNSS观测的九寨沟7.0级地震同震位移初步结果.地球物理学报, 61(1):161-170, doi:10.6038/cjg2018L0611. http://www.geophy.cn//CN/abstract/abstract14306.shtml

     

    闻学泽, 杜方, 张培震等. 2011.巴颜喀拉块体北和东边界大地震序列的关联性与2008年汶川地震.地球物理学报, 54(3):706-716, doi:10.3969/j.issn.0001-5733.2011.03.010. http://www.geophy.cn//CN/abstract/abstract7841.shtml

     

    徐锡伟, 陈文彬, 于贵华等. 2002.2001年11月14日昆仑山库赛湖地震(MS8.1)地表破裂带的基本特征.地震地质, 24(1):1-13. doi: 10.3969/j.issn.0253-4967.2002.01.001

     

    徐锡伟, 陈桂华, 王启欣等. 2017.九寨沟地震发震断层属性及青藏高原东南缘现今应变状态讨论.地球物理学报, 60(10):4018-4026, doi:10.6038/cjg20171028. http://www.geophy.cn//CN/abstract/abstract14065.shtml

     

    易桂喜, 龙锋, 梁明剑等. 2017.2017年8月8日九寨沟M7.0地震及余震震源机制解与发震构造分析.地球物理学报, 60(10):4083-4097, doi:10.6038/cjg20171033. http://www.geophy.cn//CN/abstract/abstract14070.shtml

     

    张军龙, 任金卫, 付俊东等. 2012.东昆仑断裂带东部塔藏断裂地震地表破裂特征及其构造意义.地震, 32(1):1-16. http://d.old.wanfangdata.com.cn/Periodical/diz201201001

     

    张旭, 冯万鹏, 许力生等. 2017.2017年九寨沟MS7.0级地震震源过程反演与烈度估计.地球物理学报, 60(10):4105-4116, doi:10.6038/cjg2017035. http://www.geophy.cn//CN/abstract/abstract14072.shtml

     

    周荣军, 蒲晓虹, 何玉林等. 2000.四川岷江断裂带北段的新活动、岷山断块的隆起及其与地震活动的关系.地震地质, 22(3):285-294. doi: 10.3969/j.issn.0253-4967.2000.03.009

  • 加载中

(6)

(3)

计量
  • 文章访问数:  597
  • PDF下载数:  366
  • 施引文献:  0
出版历程
收稿日期:  2018-01-23
修回日期:  2018-09-17
上线日期:  2019-04-05

目录