临夏盆地新近纪郭泥沟剖面磁组构特征及其环境意义

孔艳芬, 孙蕗, 沈中山, 葛俊逸, 邓成龙. 2018. 临夏盆地新近纪郭泥沟剖面磁组构特征及其环境意义. 地球物理学报, 61(11): 4518-4529, doi: 10.6038/cjg2018M0245
引用本文: 孔艳芬, 孙蕗, 沈中山, 葛俊逸, 邓成龙. 2018. 临夏盆地新近纪郭泥沟剖面磁组构特征及其环境意义. 地球物理学报, 61(11): 4518-4529, doi: 10.6038/cjg2018M0245
KONG YanFen, SUN Lu, SHEN ZhongShan, GE JunYi, DENG ChengLong. 2018. Anisotropy of magnetic susceptibility of the Neogene Guonigou section in the Linxia Basin and its paleoenvironmental significance. Chinese Journal of Geophysics (in Chinese), 61(11): 4518-4529, doi: 10.6038/cjg2018M0245
Citation: KONG YanFen, SUN Lu, SHEN ZhongShan, GE JunYi, DENG ChengLong. 2018. Anisotropy of magnetic susceptibility of the Neogene Guonigou section in the Linxia Basin and its paleoenvironmental significance. Chinese Journal of Geophysics (in Chinese), 61(11): 4518-4529, doi: 10.6038/cjg2018M0245

临夏盆地新近纪郭泥沟剖面磁组构特征及其环境意义

  • 基金项目:

    国家自然科学基金项目(41690112,41621004)资助

详细信息
    作者简介:

    孔艳芬, 女, 博士研究生, 主要从事古地磁学研究.E-mail:kyfdhrr@163.com

    通讯作者: 邓成龙, 男, 研究员, 主要从事古地磁学研究.E-mail:cldeng@mail.iggcas.ac.cn
  • 中图分类号: P318

Anisotropy of magnetic susceptibility of the Neogene Guonigou section in the Linxia Basin and its paleoenvironmental significance

More Information
  • 临夏盆地在东亚新生代地层、古气候、古生物研究方面占有举足轻重的地位.本文对盆地东部的郭泥沟剖面进行了详细的岩石磁学和磁组构研究,以揭示从早中新世到早上新世临夏盆地的沉积演化过程.郭泥沟剖面沉积物中的磁性矿物有磁铁矿、磁赤铁矿、赤铁矿和针铁矿,但剩磁载体以磁铁矿和赤铁矿为主.从上庄组和东乡组的褐红色粉砂质粘土到柳树组和何王家组的褐黄色粘土,赤铁矿含量呈现降低的趋势,与沉积物颜色变化一致.郭泥沟剖面沉积物磁组构类型为正常沉积磁组构.结合岩石磁学结果和磁组构参数特征可揭示临夏盆地早中新世-早上新世沉积的演化过程:早中新世上庄组为稳定湖相沉积,古水流方向为NNW,与南北向的大夏河方向一致;中中新世气候发生较明显的干湿波动,形成了东乡组的褐红色湖相粉砂质粘土夹粉砂、砂和青灰色泥灰质粘土条带,古水流方向主要为NNW,沉积过程主要受大夏河控制;中中新世晚期,受青藏高原构造运动影响,沉积相由湖相细粒沉积物转变为虎家梁组河流相砂砾层;同时,盆地的水动力条件也发生改变,晚中新世柳树组湖相沉积过程同时受南北向大夏河和东西向洮河控制,两个方向近垂直的河流共同作用导致柳树组内沉积各向异性度较低,面理和线理均不发育,磁化率最大轴偏角分布比较分散,磁组构确定的古流向为东西向和南北向;早上新世期间,由于受青藏高原隆升影响,沉积了何王家组下部的河流相砂砾层;受构造抬升影响,大夏河重新主导何王家组上部洪泛平原相沉积过程,水动力条件较为单一稳定,古流向主要为N向,与大夏河流向一致.

  • 加载中
  • 图 1 

    研究剖面及邻区地质简图(修改自Li等(2014))

    Figure 1. 

    Schematic geological map showing the Linxia Basin and sampling section of this study (modified from Li et al. (2014))

    图 2 

    代表性样品的磁化率随温度变化(χ-T)曲线实线代表加热过程,点线代表冷却过程.

    Figure 2. 

    Temperature-dependent magnetic susceptibilities (χ-T curves) for representative samples Solid and dotted lines represent heating and cooling curves, respectively.

    图 3 

    代表性样品的三轴等温剩磁(IRM)逐步热退磁曲线

    Figure 3. 

    Progressive thermal demagnetization of composite IRMs of representative samples

    图 4 

    代表性样品顺磁校正后的磁滞回线

    Figure 4. 

    Hysteresis loops after high-field slope correction for representative samples

    图 5 

    代表性样品的等温剩磁(IRM)获得曲线和反向场退磁曲线(a—c),以及矫顽力谱分析(e—f)

    Figure 5. 

    IRM acquisition curves and backfield demagnetization curves (a—c), and coercivity distributions (e—f) for representative samples

    图 6 

    郭泥沟剖面样品的磁化率各向异性

    Figure 6. 

    Anisotropy of magnetic susceptibility (AMS) of samples from the Guonigou section

    图 7 

    郭泥沟剖面的岩石地层(a—c)及其磁化率各向异性参数(KmPjT)序列和F-LPj-Km关系

    Figure 7. 

    Lithostratigraphy (a—c), and variations in mean susceptibility (Km) (d), corrected degree of anisotropy Pj (d), shape factor (T) (f), F-L and Pj-Km (g) for the Guonigou Section

    图 8 

    郭泥沟剖面各组古流向玫瑰花图N是样品数量.

    Figure 8. 

    Rose diagrams for the Hewangjia (a), Liushu (b), Dongxiang (c) and Shangzhuang (d) Formations of Guonigou section N is the number of samples.

    表 1 

    临夏盆地郭泥沟剖面各组地层的磁组构参数平均值

    Table 1. 

    Mean values of AMS parameters from Guonigou section

    组名 样品数/个 Km/10-6 SI L F Pj T
    何王家组 255 345 1.001 1.016 1.020 0.852
    柳树组 295 244 1.002 1.009 1.011 0.536
    东乡组 379 176 1.003 1.017 1.021 0.646
    上庄组 354 255 1.003 1.016 1.021 0.576
    下载: 导出CSV
  •  

    An Z S, Kutzbach J E, Prell W L, et al. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411(6833):62-66. doi: 10.1038/35075035

     

    Balsley J R, Buddington A F. 1960. Magnetic susceptibility anisotropy and fabric of some Adirondack granites and orthogneisses. American Journal of Science, 258:6-20.

     

    Deng C L, Vidic N J, Verosub K L, et al. 2005. Mineral magnetic variation of the Jiaodao Chinese loess/paleosol sequence and its bearing on long-term climatic variability. Journal of Geophysical Research:Solid Earth, 110(B3):B03103, doi:10.1029/2004JB003451.

     

    Deng C L, Zhu R X, Jackson M J, et al. 2001. Variability of the temperature-dependent susceptibility of the Holocene eolian deposits in the Chinese loess plateau:A pedogenesis indicator. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 26(11-12):873-878. doi: 10.1016/S1464-1895(01)00135-1

     

    Deng C L, He H Y, Pan Y X, et al. 2013. Chronology of the terrestrial Upper Cretaceous in the Songliao Basin, northeast Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 385:44-54. doi: 10.1016/j.palaeo.2012.07.028

     

    Deng C L, Hao Q Z, Guo Z T, et al. 2018. Quaternary integrative stratigraphy and timescale of China. Science China Earth Sciences, 61:doi:10.1007/s11430-017-9195-4.

     

    Deng T. 2004. Evolution of the late Cenozoic mammalian faunas in the Linxia Basin and its background relevant to the uplift of the Qinghai-Xizang Plateau. Quaternary Sciences (in Chinese), 24(4):413-420. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj200404007

     

    Deng T, Wang X M, Ni X J, et al. 2004. Cenozoic stratigraphic sequence of the Linxia Basin in Gansu, China and its evidence from mammal fossils. Vertebrata Palasiatica (in Chinese), 42(1):45-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gjzdwxb200401005

     

    Deng T, Qiu Z X, Wang B Y, et al. 2013. Late Cenozoic biostratigraphy of the Linxia Basin, northwestern China.//Wang X M, Flynn L J, Fortelius M, eds. Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology. New York: Columbia University Press, 243-273.

     

    Deng T, Hou S K, Wang S Q. 2018. Neogene integrative stratigraphy and timescale of China. Science China Earth Sciences, 61:doi:10.1007/s11430-017-9155-4.

     

    Dunlop D J. 2002. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils. Journal of Geophysical Research:Solid Earth, 107(B3):2057, doi:10.1029/2001JB000487.

     

    Egli R. 2003. Analysis of the field dependence of remanent magnetization curves. Journal of Geophysical Research:Solid Earth, 108(B2):2081, doi:10.1029/2002JB002023.

     

    Fan M J, Dettman D L, Song C H, et al. 2007. Climatic variation in the Linxia basin, NE Tibetan Plateau, from 13.1 to 4.3 Ma:The stable isotope record. Palaeogeography, Palaeoclimatology, Palaeoecology, 247(3-4):313-328. doi: 10.1016/j.palaeo.2006.11.001

     

    Fang X M, Li J J, Zhu J J, et al. 1997. Absolute age determination and division of the Cenozoic stratigraphy in the Linxia Basin, Gansu Province, China. Chinese Science Bulletin (in Chinese), 42(4):1457-1471.

     

    Fang X M, Garzione C, Van Der Voo R, et al. 2003. Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China. Earth and Planetary Science Letters, 210(3-4):545-560. doi: 10.1016/S0012-821X(03)00142-0

     

    Fang X M, Xu X H, Song C H, et al. 2007. High resolution rock magnetic records of Cenozoic sediments in the Linxia Basin and their implications on drying of Asian inland. Quaternary Sciences (in Chinese), 27(6):989-1000. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj200706014

     

    Ge J Y, Guo Z T, Zhao D A, et al. 2014. Spatial variations in paleowind direction during the last glacial period in North China reconstructed from variations in the anisotropy of magnetic susceptibility of loess deposits. Tectonophysics, 629:353-361. doi: 10.1016/j.tecto.2014.07.002

     

    Harrison T M, Copeland P, Kidd W S F, et al. 1992. Raising Tibet. Science, 255(5052):1663-1670. doi: 10.1126/science.255.5052.1663

     

    He H Y, Deng C L, Wang P J, et al. 2012. Toward age determination of the termination of the Cretaceous Normal Superchron. Geochemistry, Geophysics, Geosystems, 13(2):Q02002, doi:10.1029/2011GC003901.

     

    Hrouda F. 1982. Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Surveys, 5(1):37-82. doi: 10.1007/BF01450244

     

    Jelinek V. 1981. Characterization of the magnetic fabric of rocks. Tectonophysics, 79(3-4):T63-T67. doi: 10.1016/0040-1951(81)90110-4

     

    Li J J, Fang X M, Song C H, et al. 2014. Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes. Quaternary Research, 81(3):400-423. doi: 10.1016/j.yqres.2014.01.002

     

    Li Q, Yi L, Liu S Z, et al. 2016. Rock magnetic properties of the LZ908 borehole sediments from the southern Bohai Sea, eastern China. Chinese Journal of Geophysics (in Chinese), 59(5):1717-1728, doi:10.6038/cjg20160516.

     

    Li S H, Deng C L, Paterson G A, et al. 2014. Tectonic and sedimentary evolution of the late Miocene-Pleistocene Dali Basin in the southeast margin of the Tibetan Plateau:Evidences from anisotropy of magnetic susceptibility and rock magnetic data. Tectonophysics, 629:362-377. doi: 10.1016/j.tecto.2014.05.035

     

    Liu B Z, Saito Y, Yamazaki T, et al. 2001. Paleocurrent analysis for the Late Pleistocene-Holocene incised-valley fill of the Yangtze delta, China by using anisotropy of magnetic susceptibility data. Marine Geology, 176(1-4):175-189. doi: 10.1016/S0025-3227(01)00151-7

     

    Lowrie W. 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophysical Research Letters, 17(2):159-162. doi: 10.1029/GL017i002p00159

     

    Molnar P, England P, Martinod J. 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Reviews of Geophysics, 31(4):357-396. doi: 10.1029/93RG02030

     

    Nagata T. 1961. Rock Magnetism. 2nd ed. Maruzen, Tokyo.

     

    Parés J M, Van Der Pluijm B A, Dinarès-Turell J. 1999. Evolution of magnetic fabrics during incipient deformation of mudrocks (Pyrenees, northern Spain). Tectonophysics, 307(1-2):1-14. doi: 10.1016/S0040-1951(99)00115-8

     

    Roberts A P, Cui Y L, Verosub K L. 1995. Wasp-waisted hysteresis loops:Mineral magnetic characteristics and discrimination of components in mixed magnetic systems. Journal of Geophysical Research:Solid Earth, 100(B9):17909-17924. doi: 10.1029/95JB00672

     

    Stacey F D, Joplin G, Lindsay J. 1960. Magnetic anisotropy and fabric of some foliated rocks from S.E. Australia. Geofisica Pura e Applicata, 47(1):30-40. http://link.springer.com/article/10.1007/BF01992481

     

    Stacey F D, Banerjee S K. 1974. The Physical Principles of Rock Magnetism. Amsterdam:Elsevier.

     

    Tarling D H, Hrouda F. 1993. The Magnetic Anisotropy of Rocks. London:Chapman and Hall.

     

    Veloso E E, Anma R, Ota T, et al. 2007. Paleocurrent patterns of the sedimentary sequence of the Taitao ophiolite constrained by anisotropy of magnetic susceptibility and paleomagnetic analyses. Sedimentary Geology, 201(3-4):446-460. doi: 10.1016/j.sedgeo.2007.07.005

     

    Wu B L, Deng C L, Kong Y F, et al. 2018. Magnetostratigraphy of the fluvio-lacustrine sequence on the Guangongtan section in Longzhong Basin, NW China. Chinese Journal of Geophysics (in Chinese), 61(4):1390-1399, doi:10.6038/cjg2018L0203.

     

    Xu X H, Fang X M. 2008. Rock magnetic record of Cenozoic lake sediments from the Linxia basin and aridification of the Asian inland. Frontiers of Earth Science in China, 2(2):217-224. doi: 10.1007/s11707-008-0040-y

     

    Yan X L, Miao Y F, Zan J B, et al. 2014. Late Cenozoic fluvial-lacustrine susceptibility increases in the Linxia Basin and their implications for Tibetan Plateau uplift. Quaternary International, 334-335:132-140. doi: 10.1016/j.quaint.2013.12.046

     

    Yu X J, Huang B C, Guan S W, et al. 2014. Anisotropy of magnetic susceptibility of Eocene and Miocene sediments in the Qaidam Basin, Northwest China:Implication for Cenozoic tectonic transition and depocenter migration. Geochemistry, Geophysics, Geosystems, 15(6):2095-2108. doi: 10.1002/2014GC005231

     

    Zhu R X, Liu Q S, Jackson M J. 2004. Paleoenvironmental significance of the magnetic fabrics in Chinese loess-paleosols since the last interglacial (< 130 ka). Earth and Planetary Science Letters, 221(1-4):55-69. doi: 10.1016/S0012-821X(04)00103-7

     

    邓成龙, 郝青振, 郭正堂等. 2018.中国第四纪综合地层和时间框架.中国科学:地球科学, 48:doi:10.1360/N072017-00269.

     

    邓涛. 2004.临夏盆地晚新生代哺乳动物群演替与青藏高原隆升背景.第四纪研究, 24(4):413-420. doi: 10.3321/j.issn:1001-7410.2004.04.007

     

    邓涛, 王晓鸣, 倪喜军等. 2004.临夏盆地的新生代地层及其哺乳动物化石证据.古脊椎动物学报, 42(1):45-66. doi: 10.3969/j.issn.1000-3118.2004.01.005

     

    邓涛, 侯素宽, 王世骐. 2018.中国新近纪综合地层和时间框架.中国科学:地球科学, 48:doi:10.1360/N072017-00221.

     

    方小敏, 李吉均, 朱俊杰等. 1997.甘肃临夏盆地新生代地层绝对年代测定与划分.科学通报, 42(14):1457-1471. doi: 10.3321/j.issn:0023-074X.1997.14.001

     

    方小敏, 徐先海, 宋春晖等. 2007.临夏盆地新生代沉积物高分辨率岩石磁学记录与亚洲内陆干旱化过程及原因.第四纪研究, 27(6):989-1000. doi: 10.3321/j.issn:1001-7410.2007.06.014

     

    李倩, 易亮, 刘素贞等. 2016.渤海南部莱州湾Lz908孔沉积物的岩石磁学性质.地球物理学报, 59(5):1717-1728, doi:10.6038/cjg20160516. http://www.geophy.cn//CN/abstract/abstract12780.shtml

     

    吴百灵, 邓成龙, 孔艳芬等. 2018.甘肃陇中盆地会宁关公滩剖面磁性地层年代学研究.地球物理学报, 61(4):1390-1399, doi:10.6038/cjg2018L0203. http://www.geophy.cn//CN/abstract/abstract14458.shtml

  • 加载中

(8)

(1)

计量
  • 文章访问数:  449
  • PDF下载数:  315
  • 施引文献:  0
出版历程
收稿日期:  2018-04-16
修回日期:  2018-05-10
上线日期:  2018-11-05

目录