电子束流激发的电子声波数值模拟

于彬, 高新亮, 樊凯, 杜爱民. 2018. 电子束流激发的电子声波数值模拟. 地球物理学报, 61(9): 3536-3544, doi: 10.6038/cjg2018M0041
引用本文: 于彬, 高新亮, 樊凯, 杜爱民. 2018. 电子束流激发的电子声波数值模拟. 地球物理学报, 61(9): 3536-3544, doi: 10.6038/cjg2018M0041
YU Bin, GAO XinLiang, FAN Kai, DU AiMin. 2018. Numerical modeling of electron acoustic waves excited by an electron beam. Chinese Journal of Geophysics (in Chinese), 61(9): 3536-3544, doi: 10.6038/cjg2018M0041
Citation: YU Bin, GAO XinLiang, FAN Kai, DU AiMin. 2018. Numerical modeling of electron acoustic waves excited by an electron beam. Chinese Journal of Geophysics (in Chinese), 61(9): 3536-3544, doi: 10.6038/cjg2018M0041

电子束流激发的电子声波数值模拟

  • 基金项目:

    国家自然科学基金重点项目(41631071和41331067),国家自然科学基金青年项目(41604128),中国科学院前沿科学重点研究计划项目(QYZDJ-SSW-DQC010)和山东省高等学校科技计划项目(J17KA159)共同资助

详细信息
    作者简介:

    于彬, 男, 1976年生, 中国科学技术大学博士研究生, 研究方向为磁层物理.E-mail:yubin@qust.edu.cn

    通讯作者: 高新亮, E-mail:gaoxl@mail.ustc.edu.cn
  • 中图分类号: P353

Numerical modeling of electron acoustic waves excited by an electron beam

More Information
  • 通过一维静电粒子模拟程序研究了电子束流不稳定性,其中束流电子的温度远大于背景电子的温度.结果发现,所激发的波动主要是电子声波,波动的演化经历了线性增长和非线性饱和两个阶段.在非线性饱和阶段,由于电子声波相速度随频率是变化的,它可以通过非线性相互作用将背景比较冷的电子加速到很高的能量.此外,还研究了束流电子的温度、束流电子和背景电子的相对密度以及束流电子的漂移速度对电子束流不稳定性的影响.

  • 加载中
  • 图 1 

    算例1中电场强度Ex2随时间的演化

    Figure 1. 

    The time evolution of the amplitude of electric field Ex2 in Run 1

    图 2 

    算例1中通过对电场Ex在时间(从ωpet=0~400)和空间上进行二维的傅里叶分析得到的等离子体波动的色散关系(其中红线是电子声波,黑线是朗缪尔波),图中的色标代表是的对应的电场强度(eEx/meωpevTc)2.

    Figure 2. 

    The dispersion relation of plasma waves obtained by Fourier transforming the electric field Ex in time (from ωpet=0~400) and space in Run 1 (where the red line plots the dispersion relation of electron acoustic waves, and black line plots the dispersion relation of Langmuir waves), the color bars represent the amplitude of the electric field (eEx/meωpevTc)2.

    图 3 

    算例1中ωpet=12、100和500三个时刻的电场Ex、背景电子和束流电子的在(x, vx)相空间中的分布图

    Figure 3. 

    The electric field Ex, xvx phase-space plots for background and beam electrons at ωpet=12, 100 and 500 in Run 1

    图 4 

    算例1、2和3中电场强度Ex2随时间的演化

    Figure 4. 

    The time evolution of the amplitude of electric field Ex2 in Run 1, 2 and 3

    图 5 

    算例2和3中通过对电场Ex在时间(从ωpet=0-400)和空间上进行二维傅里叶分析得到的等离子体波动的色散关系(其中红线是电子声波,黑线是朗缪尔波),色标代表对应的电场强度(eEx/meωpevTc)2

    Figure 5. 

    The dispersion relation of plasma waves obtained by Fourier transforming the electric field Ex in time (from ωpet=0~400) and space in Run 2 and 3 (where the red lines plot the dispersion relation of electron acoustic waves, and black lines plot the dispersion relation of Langmuir waves), the color bars represent the amplitude of the electric field (eEx/meωpevTc)2

    图 6 

    算例4、5、6和7中电场强度Ex2随时间的演化

    Figure 6. 

    The time evolution of the amplitude of electric field Ex2 in Run 4, 5, 6 and 7

    图 7 

    算例4、5、6和7中通过对电场Ex在时间(从ωpet=0-400)和空间上进行二维的傅里叶分析得到的等离子体波动的色散关系(其中红线是电子声波,黑线是朗缪尔波),色标代表是的对应的电场强度(eEx/meωpevTc)2

    Figure 7. 

    The dispersion relation of plasma waves obtained by Fourier transforming the electric field Ex in time (from ωpet=0-400) and space in Run 4, 5, 6 and 7(where the red lines plot the dispersion relation of electron acoustic waves, and black lines plot the dispersion relation of Langmuir waves), the color bars represent the amplitude of the electric field (eEx/meωpevTc)2

    图 8 

    算例8、9和10中电场强度Ex2随时间的演化

    Figure 8. 

    The time evolution of the amplitude of electric field Ex2 in Run 8, 9 and 10

    图 9 

    算例8、9和10中通过对电场Ex在时间(从ωpet=0-400)和空间上进行二维的傅里叶分析得到的等离子体波动的色散关系(其中红线是电子声波,黑线是朗缪尔波),色标代表对应的电场强度(eEx/meωpevTc)2

    Figure 9. 

    The dispersion relation of plasma waves obtained by Fourier transforming the electric field Ex in time (from ωpet=0-400) and space in Run 8, 9 and 10 (where the red lines plot the dispersion relation of electron acoustic waves, and black lines plot the dispersion relation of Langmuir waves), the color bars represent the amplitude of the electric field (eEx/meωpevTc)2.

  •  

    An X, Bortnik J, Van Compernolle B, Decyk V, et al. 2017. Electrostatic and whistler instabilities excited by an electron beam. Physics of Plasmas, 24(7):072116, doi:10.1063/1.4986511.

     

    Bale S D, Kellogg P J, Larsen D E, et al. 1998. Bipolar electrostatic structures in the shock transition region:Evidence of electron phase space holes. Geophysical Research Letters, 25(15):2929-2932. doi: 10.1029/98GL02111

     

    Bernstein I B, Greene J M, Kruskal M D. 1957. Exact nonlinear plasma oscillations. Physical Reviews, 108(3):546-550. doi: 10.1103/PhysRev.108.546

     

    Cairns I H. 1987. Fundamental plasma emission involving ion sound waves. Journal of Plasma Physics, 38(2):169-178. doi: 10.1017/S0022377800012496

     

    Cattell C, Crumley J, Dombeck J, et al. 2002. Polar observations of solitary waves at the Earth's magnetopause. Geophysical Research Letters, 29(5):1065, doi:10.1029/2001GL014046.

     

    Chen L J, Pickett J, Kintner P, et al. 2005. On the width-amplitude inequality of electron phase space holes. Journal of Geophysical Research:Space Physics, 110(A9):A09211, doi:10.1029/2005JA011087.

     

    Ergun R E, Carlson C W, McFadden J P, et al. 1998. Debye-scale plasma structures associated with magnetic-field-aligned electric fields. Physical Review Letters, 81(4):826-829. doi: 10.1103/PhysRevLett.81.826

     

    Franz J R, Kintner P M, Pickett J S. 1998. POLAR observations of coherent electric field structures. Geophysical Research Letters, 25(8):1277-1280. doi: 10.1029/98GL50870

     

    Fried B D, Gould R W. 1961. Longitudinal ion oscillations in a hot plasma. Physics of Fluids, 4(1):139-147. doi: 10.1063/1.1706174

     

    Fu X R, Lu Q M, Wang S. 2006. The process of electron acceleration during collisionless magnetic reconnection. Physics of Plasmas, 13(1):012309, doi:10.1063/1.2164808.

     

    Fujimoto K, Machida S. 2006. A generation mechanism of electrostatic waves and subsequent electron heating in the plasma sheet-lobe boundary region during magnetic reconnection. Journal of Geophysical Research:Space Physics, 111(A9):A09216, doi:10.1029/2005JA011542.

     

    Gao X L, Mourenas D, Li W, et al. 2016. Observational evidence of generation mechanisms for very oblique lower band chorus using THEMIS waveform data. Journal of Geophysical Research:Space Physics, 121(7):6732-6748, doi:10.1002/2016JA022915.

     

    Gary S P, Feldman W C. 1977. Solar wind heat flux regulation by the whistler instability. Journal of Geophysical Research:Space Physics, 82(7):1087-1094, doi:10.1029/JA082i007p01087.

     

    Gary S P, Tokar R L. 1985. The electron-acoustic mode. Physics of Fluids, 28(8):2439. doi: 10.1063/1.865250

     

    Ginzburg V L, Zhelezniakov V V. 1958. On the possible mechanisms of sporadic solar radio emission (Radiation in an Isotropic Plasma). Soviet Astronomy, 2:653. http://cn.bing.com/academic/profile?id=534c0711f45c4abefebd42e0b5e7073c&encoded=0&v=paper_preview&mkt=zh-cn

     

    Gurnett D A, Frank L A. 1977. A region of intense plasma wave turbulence on auroral field line. Journal of Geophysical Research, 82(7):1031-1050, doi:10.1029/JA082i007p01031.

     

    Hoshino M, Mukai T, Terasawa T, et al. 2001. Suprathermal electron acceleration in magnetic reconnection. Journal of Geophysical Research:Space Physics, 106(A11):25979-25998, doi:10.1029/2001JA900052.

     

    Huang C, Lu Q M, Wang S. 2010. The mechanisms of electron acceleration in antiparallel and guide field magnetic reconnection. Physics of Plasmas, 17(7):072306, doi:10.1063/1.3457930.

     

    Huang C, Lu Q M, Wang P R, et al. 2014. Characteristics of electron holes generated in the separatrix region during antiparallel magnetic reconnection. Journal of Geophysical Research:Space Physics, 119(8):6445-6454, doi:10.1002/2014JA019991.

     

    Koen E J, Collier A B, Maharaj S K. 2012. Particle-in-cell simulations of beam-driven electrostatic waves in a plasma. Physics of Plasmas, 19(4):042101, doi:10.1063/1.3695402.

     

    Lin C S, Burch J L, Shawhan S D, et al. 1984. Correlation of auroral hiss and upward electron beams near the polar cusp. Journal of Geophysical Research:Space Physics, 89(A2):925-935, doi:10.1029/JA089iA02p00925.

     

    Lin R P, Hudson H S. 1971. 10~100 keV electron acceleration and emission from solar flares. Solar Physics, 17(2):412-435. doi: 10.1007/BF00150045

     

    Lu Q M, Cai D S. 2001. Implementation of parallel plasma particle-in-cell codes on PC cluster. Computer Physics Communications, 135(1):93-104. doi: 10.1016/S0010-4655(00)00227-7

     

    Lu Q M, Wang S, Dou X K. 2005a. Electrostatic waves in an electron-beam plasma system. Physics of Plasmas, 12(7):072903, doi:10.1063/1.1951367.

     

    Lu Q M, Wang D Y, Wang S. 2005b. Generation mechanism of electrostatic solitary structures in the Earth's auroral region. Journal of Geophysical Research:Space Physics, 110(A3):A03223, doi:10.1029/2004JA010739.

     

    Lu Q M, Lembege B, Tao J B, et al. 2008. Perpendicular electric field in two-dimensional electron phase-holes:A parameter study. Journal of Geophysical Research:Space Physics, 113(A11):A11219, doi:10.1029/2008JA013693.

     

    Lu QM, Huang C, Xie J L, et al., 2010. Features of separatrix regions in magnetic reconnection:Comparison of 2-D particle-in-cell simulations and Cluster observations. Journal of Geophysical Research:Space Physics, 115(A11):A11208, doi:10.1029/2010JA015713.

     

    Markovskii S A, Hollweg J V. 2002. Electron heat flux instabilities in coronal holes:Implications for ion heating. Geophysical Research Letters, 29(17):1843, doi:10.1029/2002GL015189.

     

    Matsumoto H, Kojima H, Miyatake T, et al. 1994. Electrostatic solitary waves (ESW) in the magnetotail:BEN wave forms observed by GEOTAIL. Geophysical Research Letters, 21(25):2915-2918, doi:10.1029/94GL01284.

     

    Melrose D B. 1980. The emission mechanisms for solar radio bursts. Space Science Reviews, 26(1):3-38. doi: 10.1007/BF00212597

     

    Miller J A, Cargill P J, Emslie A G, et al. 1997. Critical issues for understanding particle acceleration in impulsive solar flares. Journal of Geophysical Research:Space Physics, 102(A7):14631-14660, doi:10.1029/97JA00976.

     

    Mourenas D, Artemyev A V, Agapitov O V, et al. 2015. Very oblique whistler generation by low-energy electron streams. Journal of Geophysical Research:Space Physics, 120(5):3665-3683, doi:10.1002/2015JA021135.

     

    Muschietti L, Ergun R E, Roth I, et al. 1999. Phase-space electron holes along magnetic field lines. Geophysical Research Letters, 26(8):1039-1096. doi: 10.1029/1999GL900065

     

    Omura Y, Matsumoto H, Miyake T, et al. 1996. Electron beam instabilities as generation mechanism of electrostatic solitary waves in the magnetotail. Journal of Geophysical Research:Space Physics, 101(A2):2685-2698, doi:10.1029/95JA03145.

     

    Pickett J S, Chen L J, Kahler S W, et al. 2004. Isolated electrostatic structures observed throughout the Cluster orbit:Relationship to magnetic field strength. Annales Geophysicae, 22(7):2515-2523. doi: 10.5194/angeo-22-2515-2004

     

    Pottelette R, Ergun R E, Treumann R A, et al. 1999. Modulated electron-acoustic waves in auroral density cavities:FAST observations. Geophysical Research Letters, 26(16):2629-2632, doi:10.1029/1999GL900462.

     

    Tokar R L, Gurnett D A, Feldman W C. 1984. Whistler mode turbulence generated by electron beams in Earth's bow shock. Journal of Geophysical Research:Space Physics, 89(A1):105-114, doi:10.1029/JA089iA01p00105.

     

    Wang R S, Lu Q M, Huang C, et al. 2010. Multispacecraft observation of electron pitch angle distributions in magnetotailreconnection. Journal of Geophysical Research:Space Physics, 115(A1):A01209, doi:10.1029/2009JA014553.

     

    Wu M Y, Lu Q M, Huang C, et al. 2010a. Transverse instability and perpendicular electric field in two-dimensional electron phase-space holes. Journal of Geophysical Research:Space Physics, 115(A10):A10245, doi:10.1029/2009JA015235.

     

    Wu M Y, Wu H, Lu Q M, et al. 2010b. Effects of perpendicular thermal velocities on the transverse instability in electron phase space holes. Chinese Physics Letters, 27(9):095201, doi:10.1088/0256-307X/27/9/095201.

     

    Yoon P H. 1995. Plasma emission by a nonlinear beam instability. Physics of Plasmas, 2(2):537, doi:10.1063/1.870979.

  • 加载中

(9)

计量
  • 文章访问数:  250
  • PDF下载数:  384
  • 施引文献:  0
出版历程
收稿日期:  2018-01-21
修回日期:  2018-03-30
上线日期:  2018-09-05

目录