2017年米林6.9级地震与1950年察隅8.6级地震的关系及两次地震对周边活动断层的影响

尹凤玲, 韩立波, 蒋长胜, 石耀霖. 2018. 2017年米林6.9级地震与1950年察隅8.6级地震的关系及两次地震对周边活动断层的影响. 地球物理学报, 61(8): 3185-3197, doi: 10.6038/cjg2018L0761
引用本文: 尹凤玲, 韩立波, 蒋长胜, 石耀霖. 2018. 2017年米林6.9级地震与1950年察隅8.6级地震的关系及两次地震对周边活动断层的影响. 地球物理学报, 61(8): 3185-3197, doi: 10.6038/cjg2018L0761
YIN FengLing, HAN LiBo, JIANG ChangSheng, SHI YaoLin. 2018. Interaction between the 2017 M6.9 Mainling earthquake and the 1950 M8.6 Zayu earthquake and their impacts on surrounding major active faults. Chinese Journal of Geophysics (in Chinese), 61(8): 3185-3197, doi: 10.6038/cjg2018L0761
Citation: YIN FengLing, HAN LiBo, JIANG ChangSheng, SHI YaoLin. 2018. Interaction between the 2017 M6.9 Mainling earthquake and the 1950 M8.6 Zayu earthquake and their impacts on surrounding major active faults. Chinese Journal of Geophysics (in Chinese), 61(8): 3185-3197, doi: 10.6038/cjg2018L0761

2017年米林6.9级地震与1950年察隅8.6级地震的关系及两次地震对周边活动断层的影响

  • 基金项目:

    国家重点研发计划(2017YFC1500501)资助

详细信息
    作者简介:

    尹凤玲, 女, 助理研究员, 主要从事地球动力学和地震预测研究.E-mail:yin_fengling@126.com

  • 中图分类号: P315

Interaction between the 2017 M6.9 Mainling earthquake and the 1950 M8.6 Zayu earthquake and their impacts on surrounding major active faults

  • 2017年11月18日,我国西藏林芝市米林县发生M6.9地震.其东南220 km距离处,1950年发生了察隅8.6级大地震.二者同处喜马拉雅东构造结大拐弯处,周边分布多条活动断裂带.察隅地震作为20世纪我国内陆最大的地震,它的发生对周边断层活动性的影响目前研究尚少.本文基于分层半无限空间黏弹性地球模型,计算了察隅地震对周围活动断裂带和米林地震的影响,同时利用有限断层破裂模型计算了米林地震对周边活动断层产生的同震库仑应力变化,并分析了两次地震的关系,讨论了下地壳及以下介质的黏滞系数和断层有效摩擦系数对计算结果的影响.结果表明,察隅地震影响范围广、强度大且持续时间长,对喜马拉雅东构造结周边活动断层均产生了较大的影响,库仑应力变化达到数MPa量级.在下地壳黏滞系数为1.0×1020 Pa·s、摩擦系数为0.4情况下,按照青藏高原主要活动断裂每年由正常构造运动应力累积1~4 kPa计算,察隅地震的发生使米林地震提前了相当于2.79~11.15年的时间.米林6.9级地震影响范围和强度有限,只对震源附近的活动断层产生一定影响,库仑应力变化最大为数十kPa量级,对远处的断层影响较小.下地壳及以下介质的黏滞系数在震后黏滞松弛过程中影响逐渐明显,断层有效摩擦系数对同震库仑应力计算影响较大.

  • 加载中
  • 图 1 

    研究区主要断裂和M≥5.0地震活动分布

    Figure 1. 

    Major active faults and distribution of M≥5.0 earthquakes in the study area

    图 2 

    岩石圈黏弹性分层结构及物性参数分布

    Figure 2. 

    Viscoelastic stratified model of lithospere

    图 3 

    米林地震震源破过程(http://www.csi.ac.cn/manage/eqDown/05LargeEQ/201711180634M6.9/zonghe.html)

    Figure 3. 

    Slip model of Mainling earthquake

    图 4 

    察隅地震对周边断裂带产生的同震库仑应力变化

    Figure 4. 

    Coseismic Coulomb stress changes on surrounding faults caused by Zayu earthquake

    图 5 

    察隅地震对周围断裂带造成的库仑应力变化(同震+震后)

    Figure 5. 

    Coulomb stress changes caused by Zayu earthquake (Coseismic + Postseismic)

    图 6 

    察隅地震在米林地震震源位置引起的形变和库仑应力变化(1950—2050年间)

    Figure 6. 

    Displacements and Coulomb stress changes caused by Zayu earthquake at the location of Mainling earthquake (1950—2050)

    图 7 

    米林地震对周边断裂带造成的同震库仑应力变化

    Figure 7. 

    Coseismic Coulomb stress changes associated with Mainling earthquake on surrounding major faults

    图 8 

    米林地震后(2017/11/18)断层上的库仑应力变化分布(米林地震同震+察隅地震)

    Figure 8. 

    Coulomb stress changes just after Mainling earthquake (2017/11/18) on the major active faults caused by both of Zayu earthquake and Mainling earthquake

    图 9 

    对于不同黏滞系数, 察隅地震在米林震源处引起的库仑应力变化和形变随时间演化过程(1950—2050年间)

    Figure 9. 

    Comparison of displacements and Coulomb stress changes among various viscosity models

    图 10 

    有效摩擦系数不同取值情况下, 米林地震震源处库仑应力变化随时间演化过程

    Figure 10. 

    Comparison of Coulomb stress changes among various effective friction coefficients at the location of Mainling earthquake

    图 11 

    两种不同震源机制情况下, 察隅地震对周边断层造成的同震库仑应力变化

    Figure 11. 

    Coseismic Coulomb stress changes on surrounding faults associated with Zayu earthquake

    表 1 

    周边活动断层参数(宋键, 2010; 邵翠茹, 2009)

    Table 1. 

    Surrounding fault settings (Song, 2010; Shao, 2009)

    断层名称 走向(°) 倾角(°) 滑动角(°) 断层性质
    米林断裂(MLF) 60 65 0 左旋走滑
    嘉黎断裂(JLF) 320 70 55 左旋走滑兼逆冲
    墨脱断裂(MTF) 45 60 0 左旋走滑
    阿帕龙断裂(APLF) 300 30 135 右旋走滑兼逆冲
    怒江断裂(NJF) 320 90 180 右旋走滑
    喜马拉雅南麓主边界断裂(MBF) 45 85 90 逆冲
    雅鲁藏布江断裂(YLZBJF) 60 90 180 右旋走滑
    下载: 导出CSV

    表 2 

    不同黏滞系数情况下, 米林地震前(2017/11/18)震源处的库仑应力变化

    Table 2. 

    Comparison of displacements and Coulomb stress changes just before Mainling earthuqake (2017/11/18) among various viscosity models

    下地壳黏滞系数(Pa·s) 地幔黏滞系数(Pa·s) ΔCFS(kPa) Ux(m) Uy(m) Uz(m)
    1.0×1020 1.0×1021 11.15 0.7500 -1.605 0.4033
    5.0×1019 5.0×1020 -8.426 0.8889 -1.826 0.3464
    1.0×1019 1.0×1020 -49.30 1.654 -3.333 0.1379
    注:Ux-南北方向位移, 向北为正; Uy-东西方向位移, 向东为正; Uz-Z垂向位移, 向下为正.
    下载: 导出CSV

    表 3 

    不同有效摩擦系数取值情况下, 米林地震发生前(2017/11/18)震源处的库仑应力变化(下地壳黏滞系数为1.0×1020 Pa·s)

    Table 3. 

    Comparison of Coulomb stress changes just before Mainling earthuqake (2017/11/18) among various effective friction coefficients

    μ′ 0.2 0.4 0.6 0.8
    ΔCFS (kPa) 17.79 11.15 4.509 -2.132
    下载: 导出CSV
  •  

    Ali S T, Freed A M, Calais E, et al. 2008. Coulomb stress evolution in Northeastern Caribbean over the past 250 years due to coseismic, postseismic and interseismic deformation.Geophysical Journal International, 174(3):904-918. doi: 10.1111/gji.2008.174.issue-3

     

    Bai L, Li G H, Song B W. 2017. The source parameters of the M6.9 Mainling, Tibet earthquake and its tectonic implications. Chinese Journal of Geophysics (in Chinese), 60(12):4956-4963, doi:10.6038/cjg20171234.

     

    Ben-Menahem A, Aboodi E, Schild R. 1974. The source of the great Assam earthquake-an interplate wedge motion.Physics of the Earth and Planetary Interiors, 9(4):265-289. doi: 10.1016/0031-9201(74)90056-9

     

    Braitenberg C, Wang Y, Fang J, et al. 2003. Spatial variations of flexure parameters over the Tibet-Quinghai plateau.Earth and Planetary Science Letters, 205(3-4):211-224. doi: 10.1016/S0012-821X(02)01042-7

     

    Chen W P, Molnar P. 1977. Seismic moments of major earthquakes and the average rate of slip in central Asia.Journal of Geophysical Research, 82(20):2945-2969. doi: 10.1029/JB082i020p02945

     

    Deng J S, Gurnis M, Kanamori H, et al. 1998. Viscoelastic flow in the lower crust after the 1992 Landers, California, Earthquake. Science, 282(5394):1689-1692. doi: 10.1126/science.282.5394.1689

     

    Deng J, Hudnut K, Gurnis M, et al. 1999. Stress loading from viscous flow in the lower crust and triggering ofaftershocks following the 1994 Northridge, California, earthquake. Geophysical Research Letters, 26(21):3209-3212. doi: 10.1029/1999GL010496

     

    Deng Q D, Zhang P Z, Ran Y K, et al. 2003. Basic characteristics of active tectonics of China. Science in China Series D:Earth Sciences, 46(4):356-372. http://earth.scichina.com:8080/sciDe/CN/Y2003/V46/I4/356

     

    Department of Earthquake Disaster Prevention, China Earthquake Administration. 1999. The Catalogue of Chinese Modern Earthquakes (in Chinese). Beijing:China Science and Technology Press.

     

    Department of Earthquake Disaster Prevention, State Seismological Bureau. 1995. The Catalogue of Chinese Historical Strong Earthquakes (in Chinese). Beijing:Seismological Press.

     

    Freed A M, Ali S T, Bürgmann R. 2007. Evolution of stress in Southern California for the past 200 years from coseismic, postseismic and interseismic stress changes.Geophysical Journal International, 169(3):1164-1179. doi: 10.1111/gji.2007.169.issue-3

     

    Freed A M, Lin J. 2001. Delayed triggering of the 1999 Hector Mine earthquake by viscoelastic stress transfer.Nature, 411(6834):180-183. https://www.nature.com/articles/35075548

     

    Harris R A, Simpson R W. 1998. Suppression of large earthquakes by stress shadows:a comparison of Coulomb and rate-and-state failure.Journal of Geophysical Research:Atmospheres, 103(B10):24439-24451. doi: 10.1029/98JB00793

     

    Hill D P, Pollitz F, Newhall C. 2002. Earthquake-volcano interactions.Physics Today, 55(11):41-47. doi: 10.1063/1.1535006

     

    Jaeger J C, Cook N G. 1979. Fundamentals of Rock Mechanics. 3rd ed. London:Chapman and Hall.

     

    Jiang X D, Li D Y, Gong W, et al. 2014. Differential deformation and uplift mechanisms of the eastern and western Tibetan plateau. Chinese Journal of Geophysics (in Chinese), 57(12):4016-4028, doi:10.6038/cjg20141214.

     

    Jónsson S, Segall P, Pedersen R, et al. 2003. Post-earthquake ground movements correlated to pore-pressure transients.Nature, 424(6945):179-183. doi: 10.1038/nature01776

     

    Jordan T A, Watts A B. 2005. Gravity anomalies, flexure and the elastic thickness structure of the India-Eurasia collisional system.Earth and Planetary Science Letters, 236(3-4):732-750. doi: 10.1016/j.epsl.2005.05.036

     

    King G C P, Stein R S, Lin J. 1994. Static stress changes and the triggering of earthquakes.Bulletin of the Seismological Society of America, 84(3):935-953. https://www.researchgate.net/profile/Geoffrey_King/publication/237500715_Static_Stress_Changes_and_the_Triggering_of_Earthquakes/links/0046352cf8b8244599000000.pdf

     

    Li B K, Diao G L, Xu X W, et al. 2015. Redetermination of the source parameters of the Zayu, Tibet M8.6 earthquake sequence in 1950.Chinese Journal of Geophysics (in Chinese), 58(11):4254-4265, doi:10.6038/cjg20151130.

     

    Li B K, Diao G L, Zou LY, et al. 2014. The redetermination of the source parameters of the big earthquake M7.7 in the southeast of Lang county in Tibet in 1947. Seismological and Geomagnetic Observation and Research (in Chinese), (S1):85-91.

     

    Liu J, Ji C, Zhang J Y, et al.2015. Tectonic setting and general features of coseismic rupture of the 25 April, 2015 MW7.8 Gorkha, Nepal earthquake. Chinese Science Bulletin (in Chinese), 60(27):2640-2655. https://www.researchgate.net/publication/277865371_The_2015_Gorkha_Nepal_Earthquake_Insights_from_Earthquake_Damage_Survey

     

    Lorenzo-Martín F, Roth F, Wang R J. 2006. Elastic and inelastic triggering of earthquakes in the North Anatolian Fault zone.Tectonophysics, 424(3-4):271-289. doi: 10.1016/j.tecto.2006.03.046

     

    Ma K F, Chan C H, Stein R S. 2005. Response of seismicity to Coulomb stress triggers and shadows of the 1999 MW=7.6 Chi-Chi, Taiwan, earthquake. Journal of Geophysical Research, 11(B5):B05S19, doi:10.1029/2004JB003389.

     

    Marsan D. 2003. Triggering of seismicity at short timescales following Californian earthquakes. Journal of Geophysical Research, 108(B5):2266, doi:10.1029/2002JB001946.

     

    Miao M, Zhu S B. 2012. A study of the impact of static Coulomb stress changes of megathrust earthquakes alongsubduction zone on the following aftershocks. Chinese Journal of Geophysics (in Chinese), 55(9):2982-2993, doi:10.6038/j.issn.0001-5733.2012.09.017.

     

    Ozawa S, Nishimura T, Suito H, et al. 2011. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake. Nature, 475(7356):373-376. doi: 10.1038/nature10227

     

    Parsons T, Stein R S, Simpson R W, et al. 1999. Stress sensitivity of fault seismicity:A comparison between limited-offset oblique and major strike-slip faults.Journal of Geophysical Research, 104(B9):20183-20202. doi: 10.1029/1999JB900056

     

    Pollitz F, Vergnolle M, Calais E. 2003. Fault interaction and stress triggering of twentieth century earthquakes in Mongolia.Journal of Geophysical Research, 108(B10):2503, doi:10.1029/2002JB002375.

     

    Qu J H, Jiang H K, Song J, et al. 2015. Simulation study of the influence of medium viscosity on aftershock activities.Seismology and Geology (in Chinese), 37(1):53-67. http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ201501005.htm

     

    Scholz C H. 2002. The Mechanics of Earthquakes and Faulting. 2nd ed. Cambridge:Cambridge University Press.

     

    Shan B, Xiong X, Wang R J, et al. 2013. Coulomb stress evolution along Xianshuihe-Xiaojiang Fault System since 1713 and its interaction with Wenchuan earthquake, May 12, 2008.Earth and Planetary Science Letters, 377-378:199-210. doi: 10.1016/j.epsl.2013.06.044

     

    Shao C R. 2009. Seismicity of the Yarlung Tsanpo Grand Canyon Region, China[Master's thesis] (in Chinese). Beijing: Institute of Geophysics, China Earthquake Administration.

     

    Shi Y L, Cao J L. 2008. Effective viscosity of China continental lithosphere.Earth Science Frontiers (in Chinese), 15(3):82-95. doi: 10.1016/S1872-5791(08)60064-0

     

    Smith B R, Sandwell D T. 2006. A model of the earthquake cycle along the San Andreas Fault System for the past 1000 years. Journal of Geophysical Research Solid Earth, 111(B1):B01405, doi:10.1029/2005JB003703.

     

    Song J. 2010. Study on current movement characteristics and numerical simulation of the main faults around the eastern Himalayan syntaxis[Ph. D. thesis] (in Chinese). Beijing: Institute of Geology, China Earthquake Administration.

     

    Song J, Tang F T, Deng Z H, et al. 2011. Study on current movement characteristics and numerical simulation of the main faults around Eastern Himalayan Syntaxis.Chinese Journal of Geophysics (in Chinese), 54(6):1536-1548, doi:10.3969/j.issn.0001-5733.2011.06.013.

     

    Stein R S, King G C P, Lin J. 1992. Change in failure stress on the southern San Andreas fault system caused by the 1992 magnitude=7.4 Landers earthquake.Science, 258(5086):1328-1332. doi: 10.1126/science.258.5086.1328

     

    Sun Y J, Dong S W, Fan T Y, et al. 2013. The effect of TohokuMW9.0 earthquake on the near-field seismic activity from the coseismic and postseismic deformation. Progress in Geophysics (in Chinese), 28(3):1131-1139, doi:10.6038/pg20130304.

     

    Sun Y J, Guo C B, Wu Z H, et al. 2017. Numerical study of the crustal stress, strain rate and fault activity in the Eastern Tibetan plateau. Acta Geoscientia Sinica (in Chinese), 38(3):385-392.

     

    Tapponnier P, Peltzer G, Dain A Y L, et al. 1982. Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine.Geology, 10(12):611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2

     

    Thatcher W, Savage J C. 1982. Triggering of large earthquakes by magma-chamber inflation, Izu peninsula, Japan.Geology, 10(12):637-640. doi: 10.1130/0091-7613(1982)10<637:TOLEBM>2.0.CO;2

     

    Tibet Committee of Science and Technology. 1988. Zayu and Dangxiong Earthquake in Tibet (in Chinese). Lhasa:Tibet People Press.

     

    Toda S, Lin J, Meghraoui M, et al. 2008. 12 May 2008 M=7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems. Geophysical Research Letters, 35(17):L17305, doi:10.1029/2008GL034903.

     

    Wang K L, Hu Y, He J H. 2012. Deformation cycles of subduction earthquakes in a viscoelastic Earth.Nature, 484(7394):327-332. doi: 10.1038/nature11032

     

    Wan Y G, Shen Z K, Sheng S Z, et al. 2009. The influence of 2008 Wenchuan earthquake on surrounding faults.Acta Seismologica Sinica (in Chinese), 31(2):128-139.

     

    Wang R J, Lorenzo-Martín F, Roth F. 2006. PSGRN/PSCMP-a new code for calculating co-and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory.Computers & Geosciences, 32(4):527-541.

     

    Xiong X, Shan B, Zheng Y, et al. 2010. Stress transfer and its implication for earthquake hazard on the Kunlun Fault, Tibet. Tectonophysics, 482(1-4):216-225. doi: 10.1016/j.tecto.2009.07.020

     

    Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen.Annual Review of Earth and Planetary Sciences, 28:211-280. doi: 10.1146/annurev.earth.28.1.211

     

    Zhang X M, Du G B, Liu J, et al. 2018. An M6.9 earthquake at Mainling, Tibet on Nov.18, 2017. Earth Planet. Phys., 2, 1-2. http://doi.org/10.26464/epp2018009.

     

    白玲, 李国辉, 宋博文. 2017. 2017年西藏米林6.9级地震震源参数及其构造意义.地球物理学报, 60(12):4956-4963, doi:10.6038/cjg20171234. http://www.geophy.cn//CN/abstract/abstract14229.shtml

     

    邓起东, 张培震, 冉勇康等. 2002.中国活动构造基本特征.中国科学(D辑), 32(12):1020-1030. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200212006.htm

     

    国家地震局震害防御司. 1995.中国历史强震目录(公元前23世纪~公元1911年).北京:地震出版社.

     

    姜效典, 李德勇, 宫伟等. 2014.青藏高原东西向差异形变与隆升机制.地球物理学报, 57(12):4016-4028, doi:10.6038/cjg20141214. http://www.geophy.cn//CN/abstract/abstract11031.shtml

     

    李保昆, 刁桂苓, 徐锡伟等. 2015. 1950年西藏察隅M8.6强震序列震源参数复核.地球物理学报, 58(11):4254-4265, doi:10.6038/cjg20151130. http://www.geophy.cn//CN/abstract/abstract11995.shtml

     

    李保昆, 刁桂苓, 邹立晔等. 2014. 1947年西藏朗县东南M7.7大地震震源参数复核.地震地磁观测与研究, (S1):85-91.

     

    刘静, 纪晨, 张金玉等. 2015. 2015年4月25日尼泊尔MW7.8级地震的孕震构造背景和特征.科学通报, 60(27):2640-2655.

     

    缪淼, 朱守彪. 2012.俯冲带上特大地震静态库仑应力变化对后续余震触发效果的研究.地球物理学报, 55(9):2982-2993, doi:10.6038/j.issn.0001-5733.2012.09.017. http://www.geophy.cn//CN/abstract/abstract8936.shtml

     

    曲均浩, 蒋海昆, 宋金等. 2015.介质黏滞性质对余震活动影响的数值模拟.地震地质, 37(1):53-67. http://www.cqvip.com/QK/95728X/201501/664392938.html

     

    邵翠茹. 2009. 雅鲁藏布大峡谷地区地震活动性研究[硕士论文]. 北京: 中国地震局地球物理研究所.

     

    石耀霖, 曹建玲. 2008.中国大陆岩石圈等效黏滞系数的计算和讨论.地学前缘, 15(3):82-95. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200803006.htm

     

    宋键. 2010. 喜马拉雅东构造结周边地区主要断裂现今运动特征与数值模拟研究[博士论文]. 北京: 中国地震局地质研究所.

     

    宋键, 唐方头, 邓志辉等. 2011.喜马拉雅东构造结周边地区主要断裂现今运动特征与数值模拟研究.地球物理学报, 54(6):1536-1548, doi:10.3969/j.issn.0001-5733.2011.06.013. http://www.geophy.cn//CN/abstract/abstract7987.shtml

     

    孙玉军, 董树文, 范桃园等. 2013.从同震和震后形变分析日本东北MW9.0级大地震对近场地震活动性的影响.地球物理学进展, 28(3):1131-1139, doi:10.6038/pg20130304.

     

    孙玉军, 郭长宝, 吴中海等. 2017.数值模拟探讨青藏高原东部应力应变场及断裂活动性.地球学报, 38(3):385-392. doi: 10.3975/cagsb.2017.03.08

     

    万永革, 沈正康, 盛书中等. 2009. 2008年汶川大地震对周围断层的影响.地震学报, 31(2):128-139. http://www.cnki.com.cn/Article/CJFDTotal-DZXB200902002.htm

     

    西藏自治区科学技术委员会. 1988.西藏察隅当雄大地震.拉萨:西藏人民出版社.

     

    中国地震局震害防御司. 1999.中国近代地震目录(公元1912~1990 MS ≥ 4.7).北京:中国科学技术出版社.

  • 加载中

(11)

(3)

计量
  • 文章访问数:  572
  • PDF下载数:  425
  • 施引文献:  0
出版历程
收稿日期:  2017-12-10
修回日期:  2018-03-15
上线日期:  2018-08-05

目录