基于多视角观测的SEP事件与twin-CME关系研究

王智伟, 丁留贯, 周坤论, 乐贵明. 2018. 基于多视角观测的SEP事件与twin-CME关系研究. 地球物理学报, 61(9): 3515-3525, doi: 10.6038/cjg2018L0709
引用本文: 王智伟, 丁留贯, 周坤论, 乐贵明. 2018. 基于多视角观测的SEP事件与twin-CME关系研究. 地球物理学报, 61(9): 3515-3525, doi: 10.6038/cjg2018L0709
WANG ZhiWei, DING LiuGuan, ZHOU KunLun, LE GuiMing. 2018. On the relationship between large SEP event and twin-CME with the observations from multiple-vantage spacecraft. Chinese Journal of Geophysics (in Chinese), 61(9): 3515-3525, doi: 10.6038/cjg2018L0709
Citation: WANG ZhiWei, DING LiuGuan, ZHOU KunLun, LE GuiMing. 2018. On the relationship between large SEP event and twin-CME with the observations from multiple-vantage spacecraft. Chinese Journal of Geophysics (in Chinese), 61(9): 3515-3525, doi: 10.6038/cjg2018L0709

基于多视角观测的SEP事件与twin-CME关系研究

  • 基金项目:

    国家自然科学基金天文联合基金(U1731105),青年科学基金(41304150),江苏省基础研究计划面上项目(BK20171456)和江苏省青蓝工程项目联合资助

详细信息
    作者简介:

    王智伟, 男, 1993年生, 硕士, 主要从事太阳高能粒子相关研究.E-mail:idwzw@qq.com

    通讯作者: 丁留贯, 男, 1979年生, 副教授, 主要从事空间物理及空间天气学的研究.E-mail:dlg@nuist.edu.cn
  • 中图分类号: P353

On the relationship between large SEP event and twin-CME with the observations from multiple-vantage spacecraft

More Information
  • 本文联合SOHO和STEREO-A/B(三视角)日冕观测和太阳高能粒子(SEP)观测,分析了2007—2014年间169个快速(速度>900 km·s-1)、宽角度(>60°)日冕物质抛射(CME)及其先行CME和关联SEP事件.通过相关分析,给出了SOHO/EPHIN 25~53MeV及STEREO/HET 23.8~60 MeV能量范围的大SEP事件通量判断阈值,分别为0.01和0.014(cm2·s·sr·MeV)-1.三视角CME观测能有效地避免投影效应产生的twin-CME事件误判,统计得到单一视角确定twin-CME事件的误判率一般低于10%,最高不超过15%.基于三视角判断的twin-CME事件及SEP事件峰值强度,得到判断twin-CME事件的时间阈值最短约为9 h(9~13 h).single-CME产生的SEP事件强度与CME速度、动能的相关性明显高于twin-CME,并且三视角下的相关性结果与单视角类似.结果表明,一个主CME可能存在多个先行CME,依据单卫星观测判断先行CME时有一定的误判几率,但少数单个先行CME的误判并不影响基于单卫星的统计规律或统计结果.

  • 加载中
  • 图 1 

    典型的伪twin-CME事例

    Figure 1. 

    An example of typical pseudo twin-CME

    图 2 

    (a) 2007—2014年32个SEP事件GOES>10 MeV峰值通量和EPHIN 23~53 MeV峰值通量散点图.实线是数据的拟合线,其下方虚线为拟合线平移至下包络的直线; (b) 2006年12月期间EPHIN23~53 MeV通量与STEREO-A/HET 23.8~60 MeV通量对比, 实线是数据的拟合线; (c) 2006年12月期间STEREO-A、B/HET 23.8~60 MeV通量(MeV·s·cm2sr)-1对比, 实线是数据的拟合线; (d)修正后EPHIN 25~53 MeV、HET 23.8~60 MeV通量-时间廓线,红虚线是STEREO-A,蓝色点划线是STEREO-B,绿线是SOHO/EPHIN

    Figure 2. 

    Calibration for large SEP events on SOHO/EPHIN and unification of three spacecraft SOHO, STEREO-A(B). (a) Scatter plot on peak flux of SOHO/EPHIN 23~53 MeV and STEREO-A/HET 23.8~60 MeV; the solid line is the fitting line of data, and the dash line is the lower limit of the data; (b) Plot of SOHO/EPHIN 23~53 MeV and STEREO-A/HET 23.8~60 MeV proton peak flux within Dec. 2006; (c) The same plot of STEREO-A and B HET as panel (b); (d) Plot of calibrated flux of EPHIN, HET; the red dash line represents STEREO-A, the blue dot-dash line represents STEREO-B, and the green solid line represents SOHO/EPHIN.

    图 3 

    不同事件比例随时间阈值的变化

    Figure 3. 

    Different ratio as a function of Δt that the preceding CME prior to the main CME

    图 4 

    三颗星联合观测的真twin-CME、准twin-CME和伪twin-CME事件所占总事件百分比

    Figure 4. 

    Percentages of twin-CME (red circle), single-CME (blue asterisk), quasi twin-CME (magenta square), pseudo twin-CME (green right triangle) and total of quasi twin-CME and pseudo twin-CME (cyan left triangle) in all events.

    图 5 

    先行CME被三颗卫星观测到的数量统计.Ⅰ、Ⅱ、Ⅲ、Ⅳ分别代表single-CME及先行CME被1、2、3颗卫星观测到

    Figure 5. 

    The number of twin-CME or single-CME identified in 9hrs ahead of fast CME from three viewpoints, Iindicates single-CME, Ⅱ, Ⅲ, and Ⅳ represent the preceding CME detected by one, two, three spacecraft

    图 6 

    所有事件源区分布

    Figure 6. 

    Source locations of the events

    图 7 

    各卫星观测的SEP事件通量峰值与其对应的主CME速度之间的关系.红点为single-CME产生的事件,蓝圈为twin-CME产生的事件

    Figure 7. 

    Peak flux of SEP event in each spacecraft as a function of associated CME speed. The red dot represents event caused by single-CME, and the blue circle represents event caused by twin-CME

    图 8 

    各卫星观测的SEP事件通量峰值与其对应的主CME动能之间的关系.红点为single-CME产生的事件,蓝圈为twin-CME产生的事件

    Figure 8. 

    Peak flux of SEP in each spacecraft as a function of associated CME kinetic energy. The red dot represents event caused by single-CME, and the blue circle represents event caused by twin-CME

    图 9 

    SOHO卫星观测SEP事件峰值与耀斑等级相关性,红点为single-CME产生的事件,蓝圈为twin-CME产生的事件

    Figure 9. 

    Peak flux of SEP in SOHO as a function of associated flare class. The red dot represents event caused by single-CME, and the blue circle represents event caused by twin-CME

    图 10 

    三颗星联合观测的SEP事件强度与CME速度、动能和耀斑等级相关关系.红点代表single-CME产生的事件,蓝圈代表twin-CME产生的事件

    Figure 10. 

    SEP intensity derived from three spacecraft as a function of CME speed (a), kinetic energy (b) and flare class (c)

    表 1 

    伪、准twin-CME事件占总事件比例表

    Table 1. 

    Pseudo, quasi twin-CME as a percentage of total events

    类别 最高比例 平均比例 极端情况
    产生SEP的CME事件 伪twin-CME 7.6% 5.0% 12.3%
    准twin-CME 6.1% 4.8% -
    所有CME事件 伪twin-CME 8.2% 7.0% 14.1%
    准twin-CME 5.2% 4.3% -
    下载: 导出CSV
  •  

    Boerner P, Edwards C, Lemen J, et al. 2012. Initial calibration of the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Physics, 275(1-2):41-66. doi: 10.1007/s11207-011-9804-8

     

    Brueckner G E, Howard R A, Koomen M J et al. 1995. The Large Angle Spectroscopic Coronagraph (LASCO)-Visible light coronal imaging and spectroscopy. Solar Physics, 162(1-2):357-402, doi:10.1007/BF00733434.

     

    Dong L H, Ding L G, Chen X L, et al. 2014. The compound "twin-CME" eruptions associated with extreme SEP event on Jnauary 23, 2012. Journal of Guangxi Normal University (Natural Science Edition), 32(3):12-21, doi:10.16088/j.issn.1001-6600.2014.03.027.

     

    Ding L G, Jiang Y, Zhao L L, et al. 2013. The "Twin-CME" scenario and large solar energetic particle events in solar cycle 23. The Astrophysical Journal, 763(1):30, doi:10.1088/0004-637X/763/1/30.

     

    Ding L G, Li G, Dong L H, et al. 2014a. On the identification of time interval threshold in the twin-CME scenario. Journal of Geophysical Research:Space Physics, 119(3):1463-1475. doi: 10.1002/2013JA019745

     

    Ding L G, Li G, Jiang Y, et al. 2014b. Interaction between two coronal mass ejections in the 2013 May 22 large solar energetic particle event. The Astrophysical Journal, 793(2):L35, doi:10.1088/2041-8205/793/2/L35.

     

    Gopalswamy N, Yashiro S, Krucker S, et al. 2004. Intensity variation of large solar energetic particle events associated with coronal mass ejections. Journal of Geophysical Research:Space Physics, 109(A12):A12105, doi:10.1029/2004JA010602.

     

    Howard R A, Moses J D, Vourlidas A, et al. 2008. Sun earth connection coronal and heliospheric investigation (SECCHI). Space Science Reviews, 136(1-4):67-115, doi:10.1007/s11214-008-9341-4.

     

    Kahler S W. 1996. Coronal mass ejections and solar energetic particle events. High energy solar physics. AIP Conference Proceedings, 374:61-77. doi: 10.1063/1.50989

     

    Kahler S W, Reames D V, Burkepile J T. 2000. A role for ambient energetic particle intensities in shock acceleration of solar energetic particles. High Energy Solar Physics Workshop-Anticipating HESSI, ASP Conference Series, Vol. 206. Edited by R. Ramaty and N. Mandzhavidze. ISBN: 1-58381-033-1 (2000), p. 468.

     

    Le G M, Yang X X, Ding L G, et al. 2014. Solar cycle distribution of strong solar proton events and the related solar-terrestrial phenomena. Astrophysics and Space Science, 352(2):403-408. doi: 10.1007/s10509-014-1964-1

     

    Li G, Zank G P, Rice W K M. 2003. Energetic particle acceleration and transport at coronal mass ejection-driven shocks. Journal of Geophysical Research:Space Physics, 108(A2):1082, doi:10.1029/2002JA009666.

     

    Li G, Zank G P, Rice W K M. 2005. Acceleration and transport of heavy ions at coronal mass ejection-driven shocks. Journal of Geophysical Research:Space Physics, 110(A6):A06104, doi:10.1029/2004JA010600.

     

    Li G, Moore R, Mewaldt R A, et al. 2012. A twin-CME scenario for ground level enhancement events. Space Science Reviews, 171(1-4):141-160, doi:10.1007/s11214-011-9823-7.

     

    Müller-Mellin R, Kunow H, Fleissner V, et al. 1995. COSTEP-comprehensive suprathermal and energetic particle analyser. Solar Physics, 162(1-2):483-504. doi: 10.1007/BF00733437

     

    Mason G M, Mazur J E, Dwyer J R. 1999. 3He enhancements in large solar energetic particle events. The Astrophysical Journal Letters, 525(2):L133-L136, doi:10.1086/312349.

     

    Reames D V. 1995. Solar energetic particles:A paradigm shift. Reviews of Geophysics, 33(S1):585-589, doi:10.1029/95RG00188.

     

    Reames D V. 1999. Particle acceleration at the sun and in the heliosphere. Space Science Reviews, 90(3-4):413-491, doi:10.1023/A:1005105831781.

     

    Richardson I G, von Rosenvinge T T, Cane H V, et al. 2014. >25 MeV proton events observed by the high energy telescopes on the stereo a and b spacecraft and/or at earth during the first-seven years of the STEREO mission. Solar Physics, 289(8):3059-3107, doi:10.1007/s11207-014-0524-8.

     

    Shen C, Li G, Kong X, et al. 2013a. Compound twin coronal mass ejections in the 2012 May 17 gle event. The Astrophysical Journal, 763(2):114, doi:10.1088/0004-637X/763/2/114.

     

    Shen C L, Wang Y M, Pan Z H, et al. 2013b. Full halo coronal mass ejections:Do we need to correct the projection effect in terms of velocity?. Journal of Geophysical Research:Space Physics, 118(11):6858-6865, doi:10.1002/2013JA018872.

     

    Temmer M, Preiss S, Veronig A M. 2009. CME projection effects studied with STEREO/COR and SOHO/LASCO. Solar Physics, 256(1-2):183-199, doi:10.1007/s11207-009-9336-7.

     

    Von Rosenvinge T T, Reames D V, Baker R, et al. 2008. The high energy telescope for STEREO. Space Science Reviews, 136(1-4), 391-435, doi:10.1007/s11214-007-9300-5.

     

    Wang Y M, Colaninno R. 2014. Is solar cycle 24 producing more coronal mass ejections than cycle 23?. The Astrophysical Journal Letters, 784(2):L27. doi: 10.1088/2041-8205/784/2/L27

     

    董丽花, 丁留贯, 陈小兰等. 2014. 2012年1月23日SEP事件的"twin-CME"爆发现象.广西师范大学学报:自然科学版, 32(3):12-21, doi:10.16088/j.issn.1001-6600.2014.03.027.

  • 加载中

(10)

(1)

计量
  • 文章访问数:  281
  • PDF下载数:  218
  • 施引文献:  0
出版历程
收稿日期:  2017-11-13
修回日期:  2018-05-20
上线日期:  2018-09-05

目录