青藏高原东北缘活动断裂剪切模量及应力状态数值模拟

石富强, 邵志刚, 占伟, 丁晓光, 朱琳, 李玉江. 2018. 青藏高原东北缘活动断裂剪切模量及应力状态数值模拟. 地球物理学报, 61(9): 3651-3663, doi: 10.6038/cjg2018L0631
引用本文: 石富强, 邵志刚, 占伟, 丁晓光, 朱琳, 李玉江. 2018. 青藏高原东北缘活动断裂剪切模量及应力状态数值模拟. 地球物理学报, 61(9): 3651-3663, doi: 10.6038/cjg2018L0631
SHI FuQiang, SHAO ZhiGang, ZHAN Wei, DING XiaoGuang, ZHU Lin, LI YuJiang. 2018. Numerical modeling of the shear modulus and stress state of active faults in the northeastern margin of the Tibetan plateau. Chinese Journal of Geophysics (in Chinese), 61(9): 3651-3663, doi: 10.6038/cjg2018L0631
Citation: SHI FuQiang, SHAO ZhiGang, ZHAN Wei, DING XiaoGuang, ZHU Lin, LI YuJiang. 2018. Numerical modeling of the shear modulus and stress state of active faults in the northeastern margin of the Tibetan plateau. Chinese Journal of Geophysics (in Chinese), 61(9): 3651-3663, doi: 10.6038/cjg2018L0631

青藏高原东北缘活动断裂剪切模量及应力状态数值模拟

  • 基金项目:

    中国地震局地震科技星火计划(XH17034Y)、震情跟踪合同制任务(2016010202)和国家留学基金委项目(201604190009)联合资助

详细信息
    作者简介:

    石富强, 男, 1984年生, 工程师, 2011年硕士毕业于兰州大学, 主要从事地壳运动学及动力学方面的数值模拟工作.E-mail:sfq@eqsn.gov.cn

    通讯作者: 邵志刚, 男, 1977年生, 研究员, 2007年博士毕业于中国科学技术大学, 主要从事地球动力学与地震活动性方面的研究.E-mail:shaozg0911@126.com
  • 中图分类号: P313

Numerical modeling of the shear modulus and stress state of active faults in the northeastern margin of the Tibetan plateau

More Information
  • 作为控制断层两盘相对运动的重要因素,断裂带介质力学性能与断层面上的滑动速率及应力状态、区域地壳运动速度场等密切相关.受印度板块北东向推挤以及阿拉善地块和鄂尔多斯地块的阻挡作用,青藏高原东北缘构造变形复杂.本文在综合区域动力学环境、活动断裂空间展布以及下地壳黏滞性结构的基础上构建了青藏高原东北缘三维有限元动力学模型;以GPS速度场为约束模拟研究了断层剪切力学性能对区域地壳运动速度场图像的控制作用,进而在最优模型基础上分析了当前青藏高原东北缘不同断裂的应力状态.结果显示:阿尔金断裂东段和广义海原断裂对区域地壳运动速度场控制作用强烈,但二者剪切力学性能相反,阿尔金断裂东段断层剪切模量与周边地壳介质相当,而广义海原断裂断层剪切模量可低至周边地壳介质剪切模量的1/10000;六盘山断裂和西秦岭北缘断裂对区域地壳运动速度场的控制作用较弱,模拟结果显示二者均具有较强的剪切力学性能.基于最佳模型的应力状态分析指出:阿尔金断裂东段,广义海原断裂西段的木里—江仓断裂、中段的金强河—毛毛山—老虎山断裂、东段的六盘山断裂,以及西秦岭北缘断裂中西段当前应力率水平较高,且与前人给出的青藏高原东北缘高闭锁区域吻合.动力学上的高应力率与运动学上的强闭锁良好吻合,预示着这些断裂是地震危险分析值得关注的区域.

  • 加载中
  • 图 1 

    青藏高原东北缘主要活动断裂及历史地震破裂区分布(据M7专项工作组, 2012)

    Figure 1. 

    Distribution of major active faults and historical earthquake ruptures in the northeastern margin of the Tibetan plateau(Working Group of M7, 2012)

    图 2 

    研究区域GPS观测速度场(1999—2007)

    Figure 2. 

    GPS velocity field (1999—2007) in the study area

    图 3 

    模拟结果评价示意图

    Figure 3. 

    Schematic of evaluation on simulation results

    图 4 

    断层剪切模量变化对模拟残差的影响

    Figure 4. 

    Simulated residuals of different cases that incorporate different fault shear modulus

    图 5 

    阿尔金断裂、广义海原断裂以及西秦岭北缘断裂不同剪切模量组合下的模拟残差空间分布

    Figure 5. 

    Spatial distribution of simulation residuals from the cases that incorporate different fault shear modulus for AEJ, XQL and G_HY faults

    图 6 

    断裂剖面(AB)上最佳模型预测结果与观测结果对比(b)

    Figure 6. 

    Effect of HYF′s shear modulus on simulation residuals (a) and comparison of best fitted model prediction and the observed data (b) along the profile (AB) across the Haiyuan fault

    图 7 

    模拟速度场和GPS观测结果(a)及其整体无旋转场(b)对比

    Figure 7. 

    Comparison of observed GPS data and simulation results (a) and their no-net-rotation fields (b)

    图 8 

    最佳模型模拟主应力率场及断层最大剪应力率

    Figure 8. 

    Principal stress rates and maximum shear stress rates from the best fitted model

  •  

    Bird P, Kong X H. 1994. Computer simulations of California tectonics confirm very low strength of major faults. Geological Society of America Bulletin, 106(2):159-174. doi: 10.1130/0016-7606(1994)106<0159:CSOCTC>2.3.CO;2

     

    Burchfiel B C, Zhang P Z, Wang Y P, et al. 1991. Geology of the Haiyuan fault zone, Ningxia-Hui Autonomous Region, China, and its relation to the evolution of the northeastern margin of the Tibetan Plateau. Tectonics, 10(6):1091-1110. doi: 10.1029/90TC02685

     

    Chen J H, Liu Q Y, Li S C, et al. 2005. Crust and upper mantle S-wave velocity structure across Northeastern Tibetan Plateau and Ordos block. Chinese Journal of Geophysics (in Chinese), 48(2):333-342. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb200502015

     

    Chen K H, Bürgmann R. 2017. Creeping faults:Good news, bad news?. Reviews of Geophysics, 55(2):282-286. doi: 10.1002/rog.v55.2

     

    Chen L W, Zhang P Z, Lu Y Z, et al. 2008. Numerical simulation of loading/unloading effect on Coulomb failure stress among strong earthquakes in Sichuan-Yunnan area. Chinese Journal of Geophysics (in Chinese), 51(5):1411-1421. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200805014

     

    Deng Q D, Zhang P Z, Ran Y K, et al. 2003. Active tectonics and earthquake activities in China. Earth Science Frontiers (in Chinese), 10(S1):66-73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy2003z1012

     

    Dielforder A, Vollstaedt H, Vennemann T, et al. 2015. Linking megathrust earthquakes to brittle deformation in a fossil accretionary complex. Nature communications, 6:7504, doi:10.1038/ncomms8504.

     

    Duan X B. 1997. Geographical distribution of earthquake focal depth in China. Acta Seismologica Sinica (in Chinese), 19(6):590-599.

     

    Fialko Y, Sandwell D, Agnew D, et al. 2002. Deformation on nearby faults induced by the 1999 hector mine earthquake. Science, 297(5588):1858-1862. doi: 10.1126/science.1074671

     

    Gao X, Wang K L. 2014. Strength of stick-slip and creeping subduction megathrusts from heat flow observations. Science, 345(6200):1038-1041. doi: 10.1126/science.1255487

     

    Gao Z, Hua C, Cheng J, et al. 2012. Viscoelastic simulation and analysis on deep tectonic deformation of the Longmen Shan fault zone. Journal of Fudan University (Natural Science) (in Chinese), 51(4):393-399. http://d.old.wanfangdata.com.cn/Periodical/fdxb201204002

     

    Gaudemer Y, Tapponnier P, Meyer B, et al. 1995. Partitioning of crustal slip between linked, active faults in the Eastern Qilian Shan, and evidence for a major seismic gap, the 'Tianzhu gap', on the western Haiyuan Fault, Gansu (China). Geophysical Journal International, 120(3):599-645. doi: 10.1111/j.1365-246X.1995.tb01842.x

     

    Guo Z J, Xie Y D, Li M L, et al. 1976. Great Haiyuan earthquake on December 16, 1920. Acta Geophysica Sinica (in Chinese), 19(1):42-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000263736

     

    Hao M, Qin S L, Li Y H, et al. 2014. Recent horizontanl velocity field of northeastern Tibetan plateau. Journal of Geodesy and Geodynamics (in Chinese), 34(3):99-103. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKXB201403024.htm

     

    Harris R A. 2017. Large earthquakes and creeping faults. Reviews of Geophysics, 55(1):169-198. doi: 10.1002/rog.v55.1

     

    He J K, Chéry J. 2008. Slip rates of the Altyn Tagh, Kunlun and Karakorum faults (Tibet) from 3D mechanical modeling. Earth & Planetary Science Letters, 274(1-4):50-58. http://www.sciencedirect.com/science/article/pii/S0012821X08004238

     

    He J K, Lu S J, Wang W M. 2013. Three-dimensional mechanical modeling of the GPS velocity field around the northeastern Tibetan plateau and surrounding regions. Tectonophysics, 584:257-266. doi: 10.1016/j.tecto.2012.03.025

     

    Hergert T, Heidbach O. 2010. Slip-rate variability and distributed deformation in the Marmara Sea fault system. Nature Geoscience, 3(2):132-135. doi: 10.1038/ngeo739

     

    Hetzel R, Tao M X, Stokes S, et al. 2004. Late pleistocene/holocene slip rate of the Zhangye thrust (Qilian Shan, China) and implications for the active growth of the northeastern Tibetan Plateau. Tectonics, 23(6):TC6006, doi:10.1029/2004TC001653.

     

    Hu M Q, Deng Z H, Lu Y Z, et al. 2014. Contemporary tectonic deformation in north China by using three-dimensional simulation. Seismology and Geology (in Chinese), 36(1):148-165. http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ201401012.htm

     

    Jia S X, Zhang X K. 2008. Study on the crust phases of deep seismic sounding experiments and fine crust structures in the northeast margin of Tibetan plateau. Chinese Journal of Geophysics (in Chinese), 51(5):1431-1443. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200805016

     

    Jolivet R, Lasserre C, Doin M, et al. 2012. Shallow creep on the Haiyuan fault (Gansu, China) revealed by SAR interferometry. Journal of Geophysical Research, 117(B6):B06401, doi:10.1029/2011JB008732.

     

    Laske G, Masters G, Ma Z T, et al. 2013. Update on CRUST1. 0-A 1-degree Global Model of Earth's Crust. //EGU General Assembly 2013. Vienna, Austria.http://adsabs.harvard.edu/abs/2013EGUGA..15.2658L

     

    Lei X Q, Chen C Y, Zhao J M, et al. 2010. Modelling of current crustal tectonic deformation in the Chinese Tianshan orogenic belt constrained by GPS observations. Journal of Geophysics and Engineering, 7(4):431-442. doi: 10.1088/1742-2132/7/4/010

     

    Li Q, Jiang Z S, Wu Y Q, et al. 2014. Inversion of locking and distribution of slip deficit in Haiyuan-Liupan fault zone using GPS data. Geomatics and Information Science of Wuhan University (in Chinese), 39(5):575-580. http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201405014

     

    Li S Y, Moreno M, Bedford J, et al. 2015a. Revisiting viscoelastic effects on interseismic deformation and locking degree:A case study of the Peru-North Chile subduction zone. Journal of Geophysical Research:Solid Earth, 120(6):4522-4538. doi: 10.1002/2015JB011903

     

    Li Y C, Qu C Y, Shan X J, et al. 2015b. Deformation of the Haiyuan-Liupanshan fault zone inferred from the denser GPS observations. Earthquake Science, 28(5-6):319-331. doi: 10.1007/s11589-015-0134-z

     

    Li Y C, Shan X J, Qu C Y, et al. 2016. Fault locking and slip rate deficit of the Haiyuan-Liupanshan fault zone in the northeastern margin of the Tibetan Plateau. Journal of Geodynamics, 102:47-57. doi: 10.1016/j.jog.2016.07.005

     

    Li Y J, Chen L W, Liu S F, et al. 2014. Impact of the Lushan Earthquake on the surrounding faults:Insights from numerical modeling. Acta Geoscientica Sinica (in Chinese), 35(5):627-634. http://en.cnki.com.cn/Article_en/CJFDTotal-DQXB201405016.htm

     

    Li Y J, Chen L W, Liu S F, et al. 2017. Discussion on mechanism of cross-fault baseline variations along the northwestern segment of the Xianshuihe fault zone. Chinese Journal of Geophysics (in Chinese), 60(2):554-563, doi:10.6038/cjg20170210.

     

    Li Y J, Chen L W, Ye J Y. 2009. Application and development of numerical simulation in stress field evolvement and seismology. Progress in Geophysics (in Chinese), 24(2):418-431. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz200902007

     

    Liu X, Ma J, Fu R S, et al. 2010. Primary study on the dynamics of the present-day crustal motion in North China Region. Chinese Journal of Geophysics (in Chinese), 53(6):1418-1427, doi:10.3969/j.issn.0001-5733.2010.06.020.

     

    Luo G, Liu M. 2010. Stress evolution and fault interactions before and after the 2008 Great Wenchuan earthquake. Tectonophysics, 491(1-4):127-140. doi: 10.1016/j.tecto.2009.12.019

     

    Meade B J, Hager B H. 2005. Block models of crustal motion in southern California constrained by GPS measurements. Journal of Geophysical Research:Solid Earth, 110:B03403, doi:10.1029/2004JB003209.

     

    Meyer B, Tapponnier P, Bourjot L, et al. 1998. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophysical Journal International, 135(1):1-47. doi: 10.1046/j.1365-246X.1998.00567.x

     

    Molnar P, Burchfiel B C, K'uangyi L, et al. 1987. Geomorphic evidence for active faulting in the Altyn Tagh and northern Tibet and qualitative estimates of its contribution to the convergence of India and Eurasia. Geology, 15(3):249-253. doi: 10.1130/0091-7613(1987)15<249:GEFAFI>2.0.CO;2

     

    Moreno M, Rosenau M, Oncken O. 2010. 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone. Nature, 467(7312):198-202. doi: 10.1038/nature09349

     

    Shao Z G, Fu R S, Xue T X, et al. 2007. Simulating postseismic viscoelastic deformation based on Burgers model. Journal of Geodesy and Geodynamics (in Chinese), 27(5):31-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz200705007

     

    Shao Z G, Fu R S, Xue T X, et al. 2008. The numerical simulation and discussion on mechanism of postseismic deformation after Kunlun MS8.1 earthquake. Chinese Journal of Geophysics (in Chinese), 51(3):805-816. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200803021

     

    Shao Z G, Zhou L Q, Jiang C S, et al. 2010. The impact of Wenchuan MS8.0 earthquake on the seismic activity of surrounding faults. Chinese Journal of Geophysics (in Chinese), 53(8):1784-1795, doi:10.3969/j.issn.0001-5733.2010.08.004.

     

    Shen G L, Hu G K. 2006. Mechanics of Composite Materials (in Chinese). Beijing:Tsinghua University Press.

     

    Shi F Q, Zhu L, Li Y J, et al. 2018. Characterization of fault deformation behavior based on orthotropic theory. Journal of Seismological Research (in Chinese), 41(1):64-72. http://d.old.wanfangdata.com.cn/Periodical/dzyj201801008

     

    Shi Y L, Zhang B, Zhang S Q, et al. 2014. On numerical earthquake prediction. Earthquake Science, 27(3):319-335. doi: 10.1007/s11589-014-0082-z

     

    Su Q, Yuan D Y, Xie H. 2016. Geomorphic features of the Heihe river drainage basin in western Qilian Shan-Hexi Corridor and its tectonic implications. Seismology and Geology (in Chinese), 38(3):560-581. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz201603005

     

    Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547):1671-1677. doi: 10.1126/science.105978

     

    Working Group of M7. 2012. Study on the Mid-to Long-Term Potential of Large Earthquakes on the Chinese Continent (in Chinese). Beijing:Seismological Press.

     

    Yang G H, Jiang Z S, Wu Y Q, et al. 2005. No-net-rotation on crustal movement of China mainland and its application. Journal of Geodesy and Geodynamics (in Chinese), 25(4):6-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz200504002

     

    Yuan D Y, Zhang P Z, Liu B C, et al. 2004. Geometrical imagery and tectonic transformation of late quaternary active tectonics in Northeastern Margin of Qinghai-Xizang Plateau. Acta Geologica Sinica (in Chinese), 78(2):270-278. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200402017

     

    Zhang D N, Yuan S Y, Shen Z K. 2007. Numerical simulation of the recent crust movement and the fault activities in Tibetan Plateau. Chinese Journal of Geophysics (in Chinese), 50(1):153-162. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200701022

     

    Zhang G M, Wang S Y, Li L, et al. 2002. Focal depth research of earthquakes in Mainland China:implication for tectonics. Chinese Science Bulletin, 47(12):969-974. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JXTW200212000&dbname=CJFD&dbcode=CJFQ

     

    Zhang H, Gao Y, Shi Y T, et al. 2012. Tectonic stress analysis based on the crustal seismic anisotropy in the northeastern margin of Tibetan plateau. Chinese Journal of Geophysics (in Chinese), 55(1):95-104, doi:10.6038/j.issn.0001-5733.2012.01.009.

     

    Zhang H S, Gao R, Tian X B, et al. 2015. Crustal S wave velocity beneath the northeastern Tibetan plateau inferred from teleseismic P wave receiver functions. Chinese Journal of Geophysics (in Chinese), 58(11):3982-3992, doi:10.6038/cjg20151108.

     

    Zhang P Z, Shen Z K, Wang M, et al. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9):809-812. doi: 10.1130/G20554.1

     

    Zheng W J, Zhang P Z, Yuan D Y, et al. 2009. Deformation on the northern of the Tibetan plateau from GPS measurement and geologic rates of Late Quaternary along the major fault. Chinese Journal of Geophysics (in Chinese), 52(10):2491-2508, doi:10.3969/j.issn.0001-5733.2009.10.008.

     

    Zheng Y, Chen Y, Fu R S, et al. 2007. Simulation of the effects of faults movement on stress and deformation fields of Tibetan Plateau by discontinuous movement models. Chinese Journal of Geophysics (in Chinese), 50(5):1398-1408. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200705015

     

    Zhu A Y, Zhang D N, Jiang C S. 2016. Numerical simulation of the segmentation of the stress state of the Anninghe-Zemuhe-Xiaojiang faults. Science China Earth Sciences, 59(2):384-396. doi: 10.1007/s11430-015-5157-8

     

    Zhu A Y, Zhang D N, Jiang C S, et al. 2015. The numerical simulation of the strain energy density changing rate and strong earthquake recurrence interval of the Sichuan-Yunnan block. Seismology and Geology (in Chinese), 37(3):906-927. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz201503019

     

    Zhu S B, Zhang P Z. 2009. A study on the dynamical mechanisms of the Wenchuan MS8.0 earthquake, 2008. Chinese Journal of Geophysics (in Chinese), 52(2):418-427. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200902014

     

    Zhu S B, Zhang P Z. 2010. Numeric modeling of the strain accumulation and release of the 2008 Wenchuan, Sichuan, China, Earthquake. Bulletin of the Seismological Society of America, 100(5B):2825-2839. doi: 10.1785/0120090351

     

    陈九辉, 刘启元, 李顺成等. 2005.青藏高原东北缘-鄂尔多斯地块地壳上地幔S波速度结构.地球物理学报, 48(2):333-342. doi: 10.3321/j.issn:0001-5733.2005.02.015 http://www.geophy.cn//CN/abstract/abstract682.shtml

     

    陈连旺, 张培震, 陆远忠等. 2008.川滇地区强震序列库仑破裂应力加卸载效应的数值模拟.地球物理学报, 51(5):1411-1421. doi: 10.3321/j.issn:0001-5733.2008.05.014 http://www.geophy.cn//CN/abstract/abstract1333.shtml

     

    邓起东, 张培震, 冉勇康等. 2003.中国活动构造与地震活动.地学前缘, 10(S1):66-73. http://d.old.wanfangdata.com.cn/Periodical/dxqy2003z1012

     

    段星北. 1997.中国地震震源深度的地理分布.地震学报, 19(6):590-599. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700067605

     

    高中, 华诚, 程晋等. 2012.龙门山断裂带深部构造变形的粘弹性模拟分析.复旦学报(自然科学版), 51(4):393-399. http://d.old.wanfangdata.com.cn/Periodical/fdxb201204002

     

    郭增建, 谢原定, 李孟銮等. 1976. 1920年12月16日的海原大地震.地球物理学报, 19(1):42-49. http://www.geophy.cn//CN/abstract/abstract5521.shtml

     

    郝明, 秦姗兰, 李煜航等. 2014.青藏高原东北缘近期地壳水平运动研究.大地测量与地球动力学, 34(3):99-103. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DKXB201403024&dbname=CJFD&dbcode=CJFQ

     

    胡勐乾, 邓志辉, 陆远忠等. 2014.三维数值模拟在华北地区现今构造变形分析中的应用.地震地质, 36(1):148-165. doi: 10.3969/j.issn.0253-4967.2014.01.012

     

    嘉世旭, 张先康. 2008.青藏高原东北缘深地震测深震相研究与地壳细结构.地球物理学报, 51(5):1431-1443. doi: 10.3321/j.issn:0001-5733.2008.05.016 http://www.geophy.cn//CN/abstract/abstract1336.shtml

     

    李强, 江在森, 武艳强等. 2014.利用GPS资料反演海原-六盘山断裂带闭锁程度与滑动亏损分布.武汉大学学报(信息科学版), 39(5):575-580. http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb201405014

     

    李玉江, 陈连旺, 刘少峰等. 2014.芦山地震的发生对周围断层影响的数值模拟.地球学报, 35(5):627-634. http://d.old.wanfangdata.com.cn/Periodical/dqxb201405016

     

    李玉江, 陈连旺, 刘少峰等. 2017.鲜水河断裂带北西段跨断层基线变化机理探讨.地球物理学报, 60(2):554-563, doi:10.6038/cjg20170210. http://www.geophy.cn//CN/abstract/abstract13451.shtml

     

    李玉江, 陈连旺, 叶际阳. 2009.数值模拟方法在应力场演化及地震科学中的研究进展.地球物理学进展, 24(2):418-431. doi: 10.3969/j.issn.1004-2903.2009.02.007

     

    刘峡, 马瑾, 傅容珊等. 2010.华北地区现今地壳运动动力学初步研究.地球物理学报, 53(6):1418-1427, doi:10.3969/j.issn.0001-5733.2010.06.020.

     

    M7专项工作组. 2012.中国大陆大地震中-长期危险性研究.北京:地震出版社.

     

    邵志刚, 傅容珊, 薛霆虓等. 2007.以Burgers体模型模拟震后粘弹性松弛效应.大地测量与地球动力学, 27(5):31-37. http://d.old.wanfangdata.com.cn/Periodical/dkxbydz200705007

     

    邵志刚, 傅容珊, 薛霆虓等. 2008.昆仑山MS8.1级地震震后变形场数值模拟与成因机理探讨.地球物理学报, 51(3):805-816. doi: 10.3321/j.issn:0001-5733.2008.03.021 http://www.geophy.cn//CN/abstract/abstract405.shtml

     

    邵志刚, 周龙泉, 蒋长胜等. 2010. 2008年汶川MS8.0地震对周边断层地震活动的影响.地球物理学报, 53(8):1784-1795, doi:10.3969/j.issn.0001-5733.2010.08.004. http://www.geophy.cn//CN/abstract/abstract3225.shtml

     

    沈观林, 胡更开. 2006.复合材料力学.北京:清华大学出版社.

     

    石富强, 朱琳, 李玉江, 等. 2018.基于正交各向异性理论表征断层的变形行为.地震研究, 41(1):64-72. doi: 10.3969/j.issn.1000-0666.2018.01.008

     

    苏琦, 袁道阳, 谢虹. 2016.祁连山-河西走廊黑河流域地貌特征及其构造意义.地震地质, 38(3):560-581. doi: 10.3969/j.issn.0253-4967.2016.03.005

     

    杨国华, 江在森, 武艳强等. 2005.中国大陆整体无净旋转基准及其应用.大地测量与地球动力学, 25(4):6-10. http://d.old.wanfangdata.com.cn/Periodical/dkxbydz200504002

     

    袁道阳, 张培震, 刘百篪等. 2004.青藏高原东北缘晚第四纪活动构造的几何图像与构造转换.地质学报, 78(2):270-278. doi: 10.3321/j.issn:0001-5717.2004.02.017

     

    张东宁, 袁松涌, 沈正康. 2007.青藏高原现代地壳运动与活动断裂带关系的模拟实验.地球物理学报, 50(1):153-162. doi: 10.3321/j.issn:0001-5733.2007.01.022 http://www.geophy.cn//CN/abstract/abstract1412.shtml

     

    张国民, 汪素云, 李丽等. 2002.中国大陆地震震源深度及其构造含义.科学通报, 47(9):663-668. doi: 10.3321/j.issn:0023-074X.2002.09.004

     

    张辉, 高原, 石玉涛等. 2012.基于地壳介质各向异性分析青藏高原东北缘构造应力特征.地球物理学报, 55(1):95-104, doi:10.6038/j.issn.0001-5733.2012.01.009. http://www.geophy.cn//CN/abstract/abstract8383.shtml

     

    张洪双, 高锐, 田小波等. 20015.青藏高原东北缘地壳S波速度结构及其动力学含义-远震接收函数提供的证据.地球物理学报, 58(11):3982-3992, doi:10.6038/cjg20151108. http://www.geophy.cn//CN/abstract/abstract11973.shtml

     

    郑文俊, 张培震, 袁道阳等. 2009. GPS观测及断裂晚第四纪滑动速率所反映的青藏高原北部变形.地球物理学报, 52(10):2491-2508, doi:10.3969/j.issn.0001-5733.2009.10.008. http://www.geophy.cn//CN/abstract/abstract1200.shtml

     

    郑勇, 陈顒, 傅容珊等. 2007.应用非连续性模型模拟断层活动对青藏高原应力应变场的影响.地球物理学报, 50(5):1398-1408. doi: 10.3321/j.issn:0001-5733.2007.05.015 http://www.geophy.cn//CN/abstract/abstract200.shtml

     

    祝爱玉, 张东宁, 蒋长胜. 2015a.安宁河-则木河-小江断裂带应力状态分段特征的数值模拟研究.中国科学:地球科学, 45(12):1839-1852. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JDXK201512005&dbname=CJFD&dbcode=CJFQ

     

    祝爱玉, 张东宁, 蒋长胜等. 2015b.川滇地区地壳应变能密度变化率与强震复发间隔的数值模拟.地震地质, 37(3):906-927. http://d.old.wanfangdata.com.cn/Periodical/dzdz201503019

     

    朱守彪, 张培震. 2009. 2008年汶川MS8.0地震发生过程的动力学机制研究.地球物理学报, 52(2):418-427. http://www.geophy.cn//CN/abstract/abstract922.shtml

  • 加载中

(8)

计量
  • 文章访问数:  920
  • PDF下载数:  627
  • 施引文献:  0
出版历程
收稿日期:  2017-10-09
修回日期:  2018-06-18
上线日期:  2018-09-05

目录