马尼拉俯冲带北段增生楔前缘构造变形和精细结构

高金尉, 吴时国, 姚永坚, 陈传绪, 宋陶然, 王吉亮, 孙金, 张汉羽, 马本俊, 谢杨冰. 2018. 马尼拉俯冲带北段增生楔前缘构造变形和精细结构. 地球物理学报, 61(7): 2845-2858, doi: 10.6038/cjg2018L0461
引用本文: 高金尉, 吴时国, 姚永坚, 陈传绪, 宋陶然, 王吉亮, 孙金, 张汉羽, 马本俊, 谢杨冰. 2018. 马尼拉俯冲带北段增生楔前缘构造变形和精细结构. 地球物理学报, 61(7): 2845-2858, doi: 10.6038/cjg2018L0461
GAO JinWei, WU ShiGuo, YAO YongJian, CHEN ChuanXu, SONG TaoRan, WANG JiLiang, SUN Jin, ZHANG HanYu, MA BenJun, XIE YangBing. 2018. Tectonic deformation and fine structure of the frontal accretionary wedge, northern Manila subduction zone. Chinese Journal of Geophysics (in Chinese), 61(7): 2845-2858, doi: 10.6038/cjg2018L0461
Citation: GAO JinWei, WU ShiGuo, YAO YongJian, CHEN ChuanXu, SONG TaoRan, WANG JiLiang, SUN Jin, ZHANG HanYu, MA BenJun, XIE YangBing. 2018. Tectonic deformation and fine structure of the frontal accretionary wedge, northern Manila subduction zone. Chinese Journal of Geophysics (in Chinese), 61(7): 2845-2858, doi: 10.6038/cjg2018L0461

马尼拉俯冲带北段增生楔前缘构造变形和精细结构

  • 基金项目:

    国土资源部海底矿产资源重点实验室开放基金(2016GMGS-DK154),国家自然科学基金项目(41476046,41576068,91428204)和中国地质调查局项目(DD20160138,1212011220116)联合资助

详细信息
    作者简介:

    高金尉, 男, 1985年生, 2009年毕业于中国地质大学(北京), 助理研究员, 主要从事海洋地质与地球物理研究.E-mail:gaojw@idsse.ac.cn

    通讯作者: 姚永坚, 女, 1964年生, 1985年毕业于武汉地质学院, 教授级高级工程师, 主要从事海洋油气勘探和盆地油气综合研究.E-mail:yjyaomail@163.com
  • 中图分类号: P738

Tectonic deformation and fine structure of the frontal accretionary wedge, northern Manila subduction zone

More Information
  • 马尼拉俯冲带是南海的东部边界,记录了南海形成演化的关键信息,同时也是地震和海啸多发区域.本文利用过马尼拉俯冲带北段的高分辨率多道地震剖面,分析了研究区内海盆和海沟的沉积特征,精细刻画了区内增生楔前缘的构造变形、结构以及岩浆活动特征.研究区内增生楔下陆坡部分由盲冲断层、构造楔和叠瓦逆冲断层构成,逆冲断层归并于一条位于下中新统的滑脱面上,滑脱面向海方向的展布明显受到增生楔之下埋藏海山和基底隆起的影响;上陆坡的反射特征则因变形强烈和岩浆作用而难以识别;岩浆活动开始于晚中新世末期并持续至第四纪.马尼拉俯冲带北段增生楔的形成时间早于16.5 Ma,并通过前展式逆冲向南海方向扩展;马尼拉俯冲带的初始形成时间可能在晚渐新世,而此时南海海盆扩张仍在持续.南海东北缘19°N-21°N区域为南海北部陆坡向海盆的延伸,高度减薄的陆壳的俯冲造成马尼拉海沟北段几何形态明显地向东凹进.

  • 加载中
  • 图 1 

    马尼拉俯冲带大地构造位置图

    Figure 1. 

    Tectonic setting of the Manila subduction zone

    图 2 

    (a) 马尼拉俯冲带北段地形地貌图和(b)过俯冲带北段剖面示意图(Chang et al., 2012, 有修改)

    Figure 2. 

    (a) Topography and terrain of northern Manila subduction zone and (b) schematic profile across northern Manila subduction zone (modified from Chang et al., 2012)

    图 3 

    过马尼拉俯冲带北段增生楔L1多道地震反射剖面和解释(剖面位置见图 2)

    Figure 3. 

    L1 multi-channel seismic reflection profile and interpretation across accretionary wedge of northern Manila subduction zone (see Fig. 2 for location)

    图 4 

    过马尼拉俯冲带北段增生楔L2多道地震反射剖面和解释(剖面位置见图 2)

    Figure 4. 

    L2 multi-channel seismic reflection profile and interpretation across accretionary wedge of northern Manila subduction zone (see Fig. 2 for location)

    图 6 

    南海海盆和马尼拉海沟岩浆活动特征(剖面位置见图 3图 4)

    Figure 6. 

    Magmatic activities in the oceanic basin of the South China Sea and Manila Trench (see Figs. 3 and 4 for profile locations)

    图 5 

    马尼拉俯冲带北段增生楔局部构造特征(剖面位置见图 3图 4)

    Figure 5. 

    Tectonic features of accretionary wedge in northern Manila subduction zone (see Figs. 3 and 4 for profile locations)

    图 7 

    智利海沟南段地形图(Ranero et al., 2006, 有修改)

    Figure 7. 

    Topography of southern Chile Trench (modified from Ranero et al., 2006)

    图 8 

    L3多道地震反射剖面(a)和解释(b)以及二维重震联合反演重力异常拟合曲线(c)和密度剖面(d)(密度为g·cm-3)

    Figure 8. 

    L3 multi-channel seismic reflection profile (a), interpretation (b), two-dimensional gravity modeling curves (c) and density profile (d) (density is in g·cm-3)

  •  

    Arfai J, Franke D, Gaedicke C, et al. 2011. Geological evolution of the West Luzon Basin (South China Sea, Philippines). Marine Geophysical Research, 32(3):349-362, doi:10.1007/s11001-010-9113-x.

     

    Bangs N L, Cande S C. 1997. Episodic development of a convergent margin inferred from structures and processes along the southern Chile margin. Tectonics, 16(3):489-503, doi:10.1029/97TC00494.

     

    Bautista B C, Bautista M L P, Oike K, et al. 2001. A new insight on the geometry of subducting slabs in northern Luzon, Philippines. Tectonophysics, 339(3-4):279-310, doi:10.1016/S0040-1951(01)00120-2.

     

    Butler R W H. 1982. The terminology of structures in thrust belts. Journal of Structural Geology, 4(3):239-245, doi:10.1016/0191-8141(82)90011-6.

     

    Cande S C, Leslie R B, Parra J C, et al. 1987. Interaction between the Chile Ridge and Chile Trench:Geophysical and geothermal evidence. Journal of Geophysical Research:Solid Earth, 92(B1):495-520, doi:10.1029/JB092iB01p00495.

     

    Chang J H, Yu H S, Lee T Y, et al. 2012. Characteristics of the outer rise seaward of the Manila Trench and implications in Taiwan-Luzon convergent belt, South China Sea. Marine Geophysical Research, 33(4):351-367, doi:10.1007/s11001-013-9168-6.

     

    Chen A H, Xu H H. 2014. Thermal structure numerical simulation and its earthquake significance of Manila subduction zone. South China Journal of Seismology (in Chinese), 34(2):34-40, doi:10.13512/j.hndz.2014.02.005.

     

    Chen C X, Wu S G, Zhao C L. 2014. Incomingplate variation along the northern Manila Trench. Chinese Journal of Geophysics (in Chinese), 57(12):4063-4073, doi:10.6038/cjg20141218.

     

    Chen C X, Wu S G. 2015. Incoming plate variations along the northern manila trench: Implications for seafloor morphology and seismicity. //Morra G, Yuen D A, King S D eds. Subduction Dynamics: From Mantle Flow to Mega Disasters. Washington DC: American Geophysical Union and John Wiley & Sons, Inc., 81-95.

     

    Chen W H, Huang C Y, Lin Y J, et al. 2015. Depleted deep South China Sea δ13C paleoceanographic events in response to tectonic evolution in Taiwan-Luzon strait since middle Miocene. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 122:195-225, doi:10.1016/j.dsr2.2015.02.005.

     

    Chen Z H, Li J B, Wu Z Y, et al. 2009. Tectonic evolution implication of geometry shape characteristics for Manila Trench. Marine Geology & Quaternary Geology (in Chinese), 29(2):59-65, doi:10.3724/SP.J.1140.2009.02059.

     

    Christensen N I, Mooney W D. 1995. Seismic velocity structure and composition of the continental crust:A global view. Journal of Geophysical Research:Solid Earth, 100(B7):9761-9788, doi:10.1029/95JB00259.

     

    Dahlstrom C D A. 1970. Structural geology in the eastern margin of the Canadian Rocky Mountains. Bulletin of Canadian Petroleum Geology, 18(3):332-406. http://www.mendeley.com/research/structural-geology-in-the-eastern-margin-of-the-canadian-rocky-mountains/

     

    Ding W W, Yang S F, Chen H L, et al. 2006. Arc-continent collision orogeny in offshore Taiwan during Neogene. Chinese Journal of Geology (in Chinese), 41(2):195-201, doi:10.3321/j.issn:0563-5020.2006.02.002.

     

    Doo W B, Lo C L, Kuo-Chen H, et al. 2015. Exhumation of serpentinized peridotite in the northern Manila subduction zone inferred from forward gravity modeling. Geophysical Research Letters, 42(19):7977-7982, doi:10.1002/2015GL065705.

     

    Eakin D H, McIntosh K D, Van Avendonk H J A, et al. 2014. Crustal-scale seismic profiles across the Manila subduction zone:The transition from intraoceanic subduction to incipient collision. Journal of Geophysical Research:Solid Earth, 119(1):1-17, doi:10.1002/2013JB010395.

     

    Elliott D, Johnson M R W. 1980. Structural evolution in the northern part of the Moine thrust belt, NW Scotland. Earth and Environmental Science Transactions of the Royal Society, 71(2):69-96, doi:10.1017/S0263593300013523.

     

    Fan J K, Wu S G. 2014. P-wave seismic tomography of the Manila subduction zone. Chinese Journal of Geophysics (in Chinese), 57(7):2127-2137, doi:10.6038/cjg20140709.

     

    Fan J K, Zhao D P, Dong D D. 2016. Subduction of a buoyant plateau at the Manila Trench:Tomographic evidence and geodynamic implications. Geochemistry, Geophysics, Geosystems, 17(2):571-586, doi:10.1002/2015GC006201.

     

    Gao J W, Wu S G, McIntosh K, et al. 2015. The continent-ocean transition at the mid-northern margin of the South China Sea. Tectonophysics, 654:1-19, doi:10.1016/j.tecto.2015.03.003.

     

    Gao X, Zhang J, Sun Y J, et al. 2012. A simulation study on the thermal structure of Manila trench subduction zone. Chinese Journal of Geophysics (in Chinese), 55(1):117-125, doi:10.6038/j.issn.0001-5733.2012.01.011.

     

    Hayes D E, Lewis S D. 1984. A geophysical study of the Manila Trench, Luzon, Philippines:1. Crustal structure, gravity, and regional tectonic evolution. Journal of Geophysical Research:Solid Earth, 89(B11):9171-9195, doi:10.1029/JB089iB11p09171.

     

    Hayes D E, Lewis S D. 1985. Structure and tectonics of the Manila trench system, Western Luzon, Philippines. Energy, 10(3-4):263-279, doi:10.1016/0360-5442(85)90046-5.

     

    Hsu S K, Yeh Y C, Doo W B, et al. 2004. New bathymetry and magnetic lineations identifications in the northernmost South China Sea and their tectonic implications. Marine Geophysical Researches, 25(1-2):29-44, doi:10.1007/s11001-005-0731-7.

     

    Ku C Y, Hsu S K. 2009. Crustal structure and deformation at the northern Manila Trench between Taiwan and Luzon islands. Tectonophysics, 466(3-4):229-240, doi:10.1016/j.tecto.2007.11.012.

     

    Lester R, McIntosh K, Van Avendonk H J A, et al. 2013. Crustal accretion in the Manila trench accretionary wedge at the transition from subduction to mountain-building in Taiwan. Earth and Planetary Science Letters, 375:430-440, doi:10.1016/j.epsl.2013.06.007.

     

    Lester R, Van Avendonk H J A, McIntosh K, et al. 2014. Rifting and magmatism in the northeastern South China Sea from wide-angle tomography and seismic reflection imaging. Journal of Geophysical Research:Solid Earth, 119(3):2305-2323, doi:10.1002/2013JB010639.

     

    Li C F, Zhou Z Y, Li J B, et al. 2007. Geophysical characteristics of pre-collision structure in the southern sea area of Taiwan Island. Science China:Earth Science (in Chinese), 37(5):649-659.

     

    Li C F, Xu X, Lin J, et al. 2014. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12):4958-4983, doi:10.1002/2014GC005567.

     

    Li F C, Sun Z, Hu D K, et al. 2013. Crustal structure and deformation associated with seamount subduction at the north Manila Trench represented by analog and gravity modeling. Marine Geophysical Research, 34(3-4):393-406, doi:10.1007/s11001-013-9193-5.

     

    Li J B, Jin X L, Ruan A G, et al. 2004. Diapir structure in the middle of accretionary wedge of the Manila Trench. Chinese Science Bulletin (in Chinese), 49(10):1000-1008. https://www.researchgate.net/publication/323584930_Structural_features_and_formation_conditions_of_mud_diapirs_in_the_Andaman_Sea_Basin

     

    Lo C H, Onstott T C, Chen C H, et al. 1994. An assessment of 40Ar39Ar dating for the whole-rock volcanic samples from the Luzon Arc near Taiwan. Chemical Geology, 114(1-2):157-178, doi:10.1016/0009-2541(94)90049-3.

     

    Mason W G, Moresi L, Betts P G, et al. 2010. Three-dimensional numerical models of the influence of a buoyant oceanic plateau on subduction zones. Tectonophysics, 483(1-2):71-79, doi:10.1016/j.tecto.2009.08.021.

     

    McIntosh K, Van Avendonk H, Lavier L, et al. 2013. Inversion of a hyper-extended rifted margin in the southern Central Range of Taiwan. Geology, 41(8):871-874, doi:10.1130/G34402.1.

     

    McIntosh K, Lavier L, Van Avendonk H, et al. 2014. Crustal structure and inferred rifting processes in the northeast South China Sea. Marine and Petroleum Geology, 58:612-626, doi:10.1016/j.marpetgeo.2014.03.012.

     

    Nissen S S, Hayes D E, Buhl P, et al. 1995. Deep penetration seismic soundings across the northern margin of the South China Sea. Journal of Geophysical Research:Solid Earth, 100(B11):22407-22433, doi:10.1029/95JB01866.

     

    Pautot G, Rangin C. 1989. Subduction of the South China Sea axial ridge below Luzon (Philippines). Earth and Planetary Science Letters, 92(1):57-69, doi:10.1016/0012-821X(89)90020-4.

     

    Ranero C R, Von Huene R, Weinrebe W, et al. 2006. Tectonic processes along the Chile convergent margin. //Oncken O, Chong G, Franz G eds. The Andes: Active Subduction Orogeny. Berlin: Springer, 91-121.

     

    Schellart W P, Freeman J, Stegman D R, et al. 2007. Evolution and diversity of subduction zones controlled by slab width. Nature, 446(7133):308-311, doi:10.1038/nature05615.

     

    Shang J H, Li J B, Wu Z Y. 2010. Discussion on the fine tectonic features of accretionary wedge and developing patterns of minisize trapped basins at middle part of Manila Subduction Zone. Chinese Journal of Geophysics (in Chinese), 53(1):94-101, doi:10.3969/j.issn.0001-5733.2010.01.010.

     

    Sibuet J C, Hsu S K. 1997. Geodynamics of the Taiwan arc-arc collision. Tectonophysics, 274(1-3):221-251, doi:10.1016/S0040-1951(96)00305-8.

     

    Suppe J. 1984. Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan. Geological Society of China, 6:21-33. https://www.researchgate.net/publication/285518594_Kinematics_of_arc-continent_collision_flipping_of_subduction_and_back-arc_spreading_near_Taiwan

     

    Suppe J. 1988. Tectonics of arc-continent collision on both sides of the South China Sea:Taiwan and Mindoro. Acta Geologica Taiwanica, 26:1-18. http://www.researchgate.net/publication/292279299_Tectonics_of_arc-continent_collision_on_both_sides_of_the_South_China_Sea_Taiwan_and_Mindoro

     

    Wang P X, Li Q Y. 2009. Oceanographical and geological background. //Wang P, Li Q eds. The South China Sea. Netherlands: Springer, 25-73.

     

    Wang T K, Chen M K, Lee C S, et al. 2006. Seismic imaging of the transitional crust across the northeastern margin of the South China Sea. Tectonophysics, 412(3-4):237-254, doi:10.1016/j.tecto.2005.10.039.

     

    Wei X D, Ruan A G, Zhao M H, et al. 2011. A wide-angle OBS profile across Dongsha uplift and Chaoshan depression in the mid-northern South China Sea. Chinese Journal of Geophysics (in Chinese), 54(12):3325-3335, doi:10.3969/j.issn.0001-5733.2011.12.030.

     

    Wolfe J A. 1988. Arc magmatism and mineralization in North Luzon and its relationship to subduction at the East Luzon and North Manila Trenches. Journal of Southeast Asian Earth Sciences, 2(2):79-93, doi:10.1016/0743-9547(88)90011-6.

     

    Wu S G, Liu W C. 2004. Tectonics of subduction zone in the East Asia continental margin. Earth Science Frontiers (in Chinese), 11(3):15-22, doi:10.3321/j.issn:1005-2321.2004.03.003.

     

    Yang T F, Tien J L, Chen C H, et al. 1995. Fission-track dating of volcanics in the northern part of the Taiwan-Luzon Arc:Eruption ages and evidence for crustal contamination. Journal of Southeast Asian Earth Sciences, 11(2):81-93, doi:10.1016/0743-9547(94)00041-C.

     

    Yang T F, Lee T, Chen C H, et al. 1996. A double island arc between Taiwan and Luzon:Consequence of ridge subduction. Tectonophysics, 258(1-4):85-101, doi:10.1016/0040-1951(95)00180-8.

     

    Yumul G P Jr, Dimalanta C B, Tamayo R A Jr, et al. 2003. Collision, subduction and accretion events in the Philippines:A synthesis. Island ARC, 12(2):77-91, doi:10.1046/j.1440-1738.2003.00382.x.

     

    Zhao M H, Xu Y, You Q Y, et al. 2014. Integrated geophysical exploration and important scientific significance in the northern Manila Trench subduction zone. //Annual Meeting of Chinese Geoscience Union. Beijing, Abstract, 1597.

     

    Zhu J J, Li S Z, Sun Z X, et al. 2017. Crustal architecture and subduction processes along the Manila Trench, Eastern South China Sea. Earth Science Frontiers (in Chinese), 24(4):341-351, doi:10.13745/j.esf.yx.2017-3-13.

     

    陈爱华, 许鹤华. 2014.马尼拉俯冲带热结构数值模拟与地震意义.华南地震, 34(2):34-40, doi:10.13512/j.hndz.2014.02.005.

     

    陈传绪, 吴时国, 赵昌垒. 2014.马尼拉海沟北段俯冲带输入板块的不均一性.地球物理学报, 57(12):4063-4073, doi:10.6038/cjg20141218. http://www.geophy.cn//CN/abstract/abstract11035.shtml

     

    陈志豪, 李家彪, 吴自银等. 2009.马尼拉海沟几何形态特征的构造演化意义.海洋地质与第四纪地质, 29(2):59-65, doi:10.3724/SP.J.1140.2009.02059.

     

    丁巍伟, 杨树锋, 陈汉林等. 2006.台湾岛以南海域新近纪的弧-陆碰撞造山作用.地质科学, 41(2):195-201, doi:10.3321/j. issn:0563-5020.2006.02.002.

     

    范建柯, 吴时国. 2014.马尼拉俯冲带的地震层析成像研究.地球物理学报, 57(7):2127-2137, doi:10.6038/cjg20140709. http://www.geophy.cn//CN/abstract/abstract10482.shtml

     

    高翔, 张健, 孙玉军等. 2012.马尼拉海沟俯冲带热结构的模拟研究.地球物理学报, 55(1):117-125, doi:10.6038/j.issn.0001-5733.2012.01.011. http://www.geophy.cn//CN/abstract/abstract8385.shtml

     

    李春峰, 周祖翼, 李家彪等. 2007.台湾岛南部海域的前碰撞构造地球物理特征.中国科学D辑:地球科学, 37(5):649-659. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200705009

     

    李家彪, 金翔龙, 阮爱国等. 2004.马尼拉海沟增生楔中段的挤入构造.科学通报, 49(10):1000-1008. doi: 10.3321/j.issn:0023-074X.2004.10.015

     

    尚继宏, 李家彪, 吴自银. 2010.马尼拉俯冲带中段增生楔精细构造特征及微型圈闭盆地发育模式探讨.地球物理学报, 53(1):94-101, doi:10.3969/j.issn.0001-5733.2010.01.010. http://www.geophy.cn//CN/abstract/abstract1124.shtml

     

    卫小冬, 阮爱国, 赵明辉等. 2011.穿越东沙隆起和潮汕坳陷的OBS广角地震剖面.地球物理学报, 54(12):3325-3335, doi:10.3969/j.issn.0001-5733.2011.12.030. http://www.geophy.cn//CN/abstract/abstract8318.shtml

     

    吴时国, 刘文灿. 2004.东亚大陆边缘的俯冲带构造.地学前缘, 11(3):15-22, doi:10.3321/j.issn:1005-2321.2004.03.003.

     

    赵明辉, 徐亚, 游庆瑜等. 2014. 马尼拉海沟俯冲带北段综合地球物理探测及重要科学意义. //中国地球科学联合学术年会论文集. 北京, 1597.

     

    朱俊江, 李三忠, 孙宗勋等. 2017.南海东部马尼拉俯冲带的地壳结构和俯冲过程.地学前缘, 24(4):341-351, doi:10.13745/j.esf.yx.2017-3-13.

  • 加载中

(8)

计量
  • 文章访问数:  934
  • PDF下载数:  301
  • 施引文献:  0
出版历程
收稿日期:  2017-09-26
修回日期:  2017-11-10
上线日期:  2018-07-05

目录