基于频率衰减补偿的微地震定位方法

常旭, 李政, 王鹏, 姚振兴, 王一博, 王璐琛, 桂志先. 2018. 基于频率衰减补偿的微地震定位方法. 地球物理学报, 61(1): 250-257, doi: 10.6038/cjg2018L0396
引用本文: 常旭, 李政, 王鹏, 姚振兴, 王一博, 王璐琛, 桂志先. 2018. 基于频率衰减补偿的微地震定位方法. 地球物理学报, 61(1): 250-257, doi: 10.6038/cjg2018L0396
CHANG Xu, LI Zheng, WANG Peng, YAO ZhenXing, WANG YiBo, WANG LuShen, GUI ZhiXian. 2018. Micro-seismic location based on frequency attenuation compensation. Chinese Journal of Geophysics (in Chinese), 61(1): 250-257, doi: 10.6038/cjg2018L0396
Citation: CHANG Xu, LI Zheng, WANG Peng, YAO ZhenXing, WANG YiBo, WANG LuShen, GUI ZhiXian. 2018. Micro-seismic location based on frequency attenuation compensation. Chinese Journal of Geophysics (in Chinese), 61(1): 250-257, doi: 10.6038/cjg2018L0396

基于频率衰减补偿的微地震定位方法

  • 基金项目:

    国家自然科学基金(41230317,41390455),中科院战略先导项目(XDB10030500)资助

详细信息
    作者简介:

    常旭, 研究员, 研究方向为地震波传播、地震成像、微地震监测与反演.E-mail:changxu@mail.iggcas.ac.cn

  • 中图分类号: P631

Micro-seismic location based on frequency attenuation compensation

  • 本文分析了不同频率的震源子波在传播过程中频率衰减与传播距离的关系,提出了地震波频率衰减补偿的微地震定位方法.该方法通过对地震波频率衰减的补偿,间接获取微地震事件的道间时差,避免了微地震事件的信号识别与走时拾取,实现了对微地震事件的定位.本文提出了方法的基本原理和计算方法,并通过理论计算和误差分析表明该方法是合理的和有效的.

  • 加载中
  • 图 1 

    频率衰减补偿法微地震震源定位的原理

    Figure 1. 

    Frequency attenuation compensation method of micro seismic source localization principle diagram

    图 2 

    微地震信号主频随传播距离的变化

    Figure 2. 

    Micro-seismic signal frequency varies with the change of the propagation distance

    图 3 

    确定微地震震源位置

    Figure 3. 

    Locate the micro-seismic source

    图 4 

    二维均匀模型

    Figure 4. 

    Two-dimensional uniform model

    图 5 

    道间时差补偿法理论计算结果

    Figure 5. 

    Theoretical calculations result using time difference compensation method

    图 6 

    均匀模型微地震震源定位方法

    Figure 6. 

    Determined micro-seismic source location

    图 7 

    频率衰减补偿计算步长以及补偿停机条件对震源定位精度的影响

    Figure 7. 

    The influence on location accuracy by algorithm step and stopping criteria

  •  

    Aki K, Richards P. 2002. Quantitative Seismology. 2nd ed. Sausalito:University Science Books.

     

    Allen R V. 1978, Automatic earthquake recognition and timing from single traces. Bulletin of the Seismological Society of America, 68(5):1521-1532. https://pubs.geoscienceworld.org/bssa/article-lookup/68/5/1521

     

    Artman B, Podladtchikov I, Witten B. 2010. Source location using time-reverse imaging. Geophysical Prospecting, 58(5):861-873. doi: 10.1111/j.1365-2478.2010.00911.x

     

    Baer M, Kradolfer U.1987.An automatic phase picker for local and teleseismic events. Bulletin of the Seismological Society of America, 77(4):1437-1445. https://www.researchgate.net/publication/215755718_An_Automatic_phase_picker_for_local_and_teleseismic_events

     

    Daniels J L, Waters G A, LeCalvez J H, et al. 2007. Contacting more of the Barnett shale through an integration of real-time microseismic monitoring, petrophysics, and hydraulic fracture design.//77th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts.

     

    Eisner L, Williams-Stroud S Y, Hill A, et al. 2010. Beyond the dots in the box:Microseismicity-constrained fracture models for reservoir simulation. The Leading Edge, 29(3):326-333. doi: 10.1190/1.3353730

     

    Hanafy S M, Cao W P, McCarter K, et al. 2009. Using super-stacking and super-resolution properties of time-reversal mirrors to locate trapped miners. The Leading Edge, 28(3):302-307. https://utah.pure.elsevier.com/en/publications/using-super-stacking-and-super-resolution-properties-of-time-reve

     

    Liu J S, Wang Y, Yao Z X. 2013. On micro-seismic first arrival identification:A case study. Chinese Journal of Geophysics (in Chinese), 56(5):1660-1666, doi:10.6038/cjg20130523.

     

    Lu W K, Zhang Y S, Zhang S W, et al. 2007. Blind wavelet estimation using a zero-lag slice of the fourth-order statistics. Journal of Geophysics and Engineering, 4(1):24-30. doi: 10.1088/1742-2132/4/1/004

     

    Maxwell S C, Chorney D, Goodfellow S D. 2015. Microseismic geomechanics of hydraulic-fracture networks:Insights into mechanisms of microseismic sources. The Leading Edge, 34(8):904-910. doi: 10.1190/tle34080904.1

     

    Poliannikov O V, Malcolm A, Djikpesse H, et al. 2011. Interferometric hydrofracture microseism localization using neighboring fracture. Geophysics, 76(6):WC27-WC36. doi: 10.1190/geo2010-0325.1

     

    Sava P, Poliannikov O. 2008. Interferometric imaging condition for wave-equation migration. Geophysics, 73(2):S47-S61. doi: 10.1190/1.2838043

     

    Song F, Toksöz M N. 2011. Full-waveform based complete moment tensor inversion and source parameter estimation from downhole microseismic data for hydrofracture monitoring. Geophysics, 76(6):WC103-WC116. doi: 10.1190/geo2011-0027.1

     

    Waldhauser F, Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault, California. Bulletin of the Seismological Society of America, 90(6):1353-1368. doi: 10.1785/0120000006

     

    Wang L C, Chang X, Wang Y B. 2016. Locating micro-seismic events based on interferometric traveltime inversion. ChineseJournal of Geophysics (in Chinese), 59(8):3037-3045, doi:10.6038/cjg20160826.

     

    Wang P, Chang X, Wang Y B, et al. 2014. Automatic event detection and event recovery in low SNR microseismic sifnals based on time-frequency sparseness. Chinese Journal of Geophysics (in Chinese), 57(8):2656-2665, doi:10.6038/cjg20140824.

     

    Zhang H J, Thurber C H. 2003. Double-difference tomography:the method and its application to the Hayward Fault, California. Bulletin of the Seismological Society of America, 93(5):1875-1889. doi: 10.1785/0120020190

     

    刘劲松, 王赟, 姚振兴. 2013.微地震信号到时自动拾取方法.地球物理学报, 56(5):1660-1666, doi:10.6038/cjg20130523.

     

    王鹏, 常旭, 王一博等. 2014.基于时频稀疏性分析法的低信噪比微震事件识别与恢复.地球物理学报, 57(8):2656-2665, doi:10.6038/cjg20140824.

     

    王璐琛, 常旭, 王一博. 2016.干涉走时微地震震源定位方法.地球物理学报, 59(8):3037-3045, doi:10.6038/cjg20160826.

  • 加载中

(7)

计量
  • 文章访问数:  457
  • PDF下载数:  615
  • 施引文献:  0
出版历程
收稿日期:  2017-06-30
修回日期:  2017-09-12
上线日期:  2018-01-05

目录