西南印度洋岩浆补给特征研究:来自洋壳厚度的证据

刘持恒, 李江海, 张华添, 刘仲兰, 范庆凯. 2018. 西南印度洋岩浆补给特征研究:来自洋壳厚度的证据. 地球物理学报, 61(7): 2859-2870, doi: 10.6038/cjg2018L0395
引用本文: 刘持恒, 李江海, 张华添, 刘仲兰, 范庆凯. 2018. 西南印度洋岩浆补给特征研究:来自洋壳厚度的证据. 地球物理学报, 61(7): 2859-2870, doi: 10.6038/cjg2018L0395
LIU ChiHeng, LI JiangHai, ZHANG HuaTian, LIU ZhongLan, FAN QingKai. 2018. Magma supply of the southwest Indian Ocean: evidence from crustal thickness anomalies. Chinese Journal of Geophysics (in Chinese), 61(7): 2859-2870, doi: 10.6038/cjg2018L0395
Citation: LIU ChiHeng, LI JiangHai, ZHANG HuaTian, LIU ZhongLan, FAN QingKai. 2018. Magma supply of the southwest Indian Ocean: evidence from crustal thickness anomalies. Chinese Journal of Geophysics (in Chinese), 61(7): 2859-2870, doi: 10.6038/cjg2018L0395

西南印度洋岩浆补给特征研究:来自洋壳厚度的证据

  • 基金项目:

    多金属硫化物合同区资源勘探与评价(DY135-S1-1-03),国家重点研发计划课题(2016YFC0503301),大型油气田及煤层气开发国家科技重大专项(2016ZX05033002-007)资助

详细信息
    作者简介:

    刘持恒, 男, 1989年生, 博士研究生, 主要从事构造地质学和海洋地质研究.E-mail:liuchiheng@yeah.net

    通讯作者: 李江海, 男, 1965年生, 教授, 博士, 主要从事全球构造研究.E-mail:jhli@pku.edu.cn
  • 中图分类号: P738

Magma supply of the southwest Indian Ocean: evidence from crustal thickness anomalies

More Information
  • 西南印度洋中脊为典型的超慢速扩张洋中脊,其岩浆补给具有不均匀分布的特征.洋壳厚度是洋中脊和热点岩浆补给的综合反映,因此反演洋壳厚度是研究大尺度洋中脊和洋盆岩浆补给过程的一种有效方法.本文通过对全球公开的自由空气重力异常、水深、沉积物厚度和洋壳年龄数据处理得到剩余地幔布格重力异常,并反演西南印度洋地区洋壳厚度,定量地分析了西南印度洋的洋壳厚度分布及其岩浆补给特征.研究发现,西南印度洋洋壳平均厚度7.5 km,但变化较大,标准差可达3.5 km,洋壳厚度的频率分布具有双峰式的混合偏态分布特征.通过分离双峰统计的结果,将西南印度洋洋壳厚度分为0~4.8 km的薄洋壳、4.8~9.8 km的正常洋壳和9.8~24 km的厚洋壳三种类型,洋中脊地区按洋壳厚度变化特征可划分为7个洋脊段.西南印度洋地区薄洋壳受转换断层控制明显,转换断层位移量越大,引起的洋壳减薄厚度越大,减薄范围与转换断层位移量不存在明显相关性.厚洋壳主要受控于该区众多的热点活动,其中布维热点、马里昂热点和克洛泽热点的影响范围分别约340 km,550 km和900 km.Andrew Bain转换断层北部外角形成厚的洋壳,具有与快速扩张洋中脊相似的转换断层厚洋壳特征.

  • 加载中
  • 图 1 

    西南印度洋中脊及邻区大地构造图

    Figure 1. 

    Tectonic map of Southwest Indian Ridge and adjacent areas

    图 2 

    (a) 西南印度洋自由空气重力异常图,(b)地幔布格重力异常(MBA),(c)大洋岩石圈冷却引起的重力效应,(d)剩余地幔布格重力异常(RMBA)

    Figure 2. 

    Free-air gravity anomalies (a), mantle Bouguer anomalies (b), gravity anomalies caused by lithosphere cooling (c), and residual mantle Bouguer anomalies (d) in Southwest Indian Ocean

    图 3 

    西南印度洋洋壳厚度图

    Figure 3. 

    Map showing oceanic crustal thickness of Southwest Indian Ocean

    图 4 

    西南印度洋洋壳厚度分布频率图

    Figure 4. 

    Frequency distribution of crustal thickness in Southwest Indian Ocean

    图 5 

    西南印度洋洋壳厚度分类图

    Figure 5. 

    Classification of crustal thickness in Southwest Indian Ocean

    图 6 

    西南印度洋中脊16条转换断层位移量(除去Andrew Bain TF)与减薄的洋壳厚度(a)和减薄洋壳影响范围(TFE)关系图(b)

    Figure 6. 

    (a) Correlation between reduced thickness and the offsets of transform faults in SWIR. (b) Correlation between transform fault effect (TFE) and the offsets of transform faults in SWIR

    图 7 

    转换断层对洋壳厚度的影响方式示意图(据Sclater et al., 2005修改)

    Figure 7. 

    Model of transform faults affecting oceanic crustal thickness (modified from Sclater et al., 2005)

  •  

    Bai H L, Montési L G J, Behn M D. 2017. MeltMigrator:A MATLAB-based software for modeling three-dimensional melt migration and crustal thickness variations at mid-ocean ridges following a rules-based approach. Geochemistry, Geophysics, Geosystems, 18(1):445-456. doi: 10.1002/2016GC006686

     

    Bai Y L, Williams S E, Müller R D, et al. 2014. Mapping crustal thickness using marine gravity data:Methods and uncertainties. Geophysics, 79(2):F1-F10. https://www.researchgate.net/publication/260908301_Mapping_crustal_thickness_using_marine_gravity_data_Methods_and_uncertainties_-_Supplementary_Resources

     

    Campbell I H. 2007. Testing the plume theory. Chemical Geology, 241(3-4):153-176. doi: 10.1016/j.chemgeo.2007.01.024

     

    Cannat M, Mevel C, Maia M, et al. 1995. Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22° 24°N). Geology, 23(1):49-52. doi: 10.1130/0091-7613(1995)023<0049:TCUEAR>2.3.CO;2

     

    Cannat M, Rommevaux-Jestin C, Sauter D, et al. 1999. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E). Journal of Geophysical Research:Solid Earth, 104(B10):22825-22843. doi: 10.1029/1999JB900195

     

    Cannat M, Sauter D, Bezos A, et al. 2008. Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge. Geochemistry, Geophysics, Geosystems, 2008, 9(4):Q04002, doi:10.1029/2007GC001676.

     

    Carbotte S M, Nedimović M R, Canales J P, et al. 2008. Variable crustal structure along the Juan de Fuca Ridge:Influence of on-axis hot spots and absolute plate motions. Geochemistry, Geophysics, Geosystems, 9(8):Q08001, doi:10.1029/2007GC001922.

     

    Carbotte S M, Smith D K, Cannat M, et al. 2015. Tectonic and magmatic segmentation of the Global Ocean Ridge System:A synthesis of observations. Geological Society, London, Special Publications, 420(1):249-295. http://adsabs.harvard.edu/abs/2014AGUFM.V23E..08K

     

    Chen Y J. 1992. Oceanic crustal thickness versus spreading rate. Geophysical Research Letters, 19(8):753-756. doi: 10.1029/92GL00161

     

    Dalton C A, Langmuir C H, Gale A. 2014. Geophysical and geochemical evidence for deep temperature variations beneath mid-ocean ridges. Science, 344(6179):80-83. doi: 10.1126/science.1249466

     

    Dick H J B, Lin J, Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965):405-412. doi: 10.1038/nature02128

     

    Dick H J B, MacLeod C J, Blum P, et al. 2016. Southwest Indian Ridge Lower Crust and Moho: the nature of the lower crust and Moho at slower spreading ridges (SloMo Leg 1). International Ocean Discovery Program Expedition 360 Preliminary Report, 1-50.

     

    Divins D L. 2003. Total sediment thickness of the world's oceans & marginal seas. Boulder, CO: NOAA National Geophysical Data Center. http://www.ngdc.noaa.gov/mgg/sedthick/sedthick.html.

     

    Dunn R A, Lekić L, Detrick R S, et al. 2005. Three-dimensional seismic structure of the Mid-Atlantic Ridge (35°N):Evidence for focused melt supply and lower crustal dike injection. Journal of Geophysical Research:Solid Earth, 110(B9):B09101, doi:10.1029/2004JB003473.

     

    Gómez-Ortiz D, Agarwal B N P. 2005. 3DINVER. M:A MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker-Oldenburg's algorithm. Computers & Geosciences, 31(4):513-520. http://www.researchgate.net/publication/250730195_3DINVER.M_a_MATLAB_program_to_invert_the_gravity_anomaly_over_a_3D_horizontal_density_interface_by_ParkerOldenburg's_algorithm

     

    Gautheron C, Moreira M, Gerin C, et al. 2015. Constraints on the DUPAL anomaly from helium isotope systematics in the Southwest Indian mid-ocean ridge basalts. Chemical Geology, 417:163-172. doi: 10.1016/j.chemgeo.2015.10.005

     

    Georgen J E, Lin J, Dick H J B. 2001. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge:Effects of transform offsets. Earth and Planetary Science Letters, 187(3-4):283-300. doi: 10.1016/S0012-821X(01)00293-X

     

    Georgen J E, Lin J. 2003. Plume-transform interactions at ultra-slow spreading ridges:Implications for the southwest Indian ridge. Geochemistry, Geophysics, Geosystems, 4(9):9106, doi:10.1029/2003GC000542.

     

    Gregg P M, Lin J, Behn M D, et al. 2007. Spreading rate dependence of gravity anomalies along oceanic transform faults. Nature, 448(7150):183-187. doi: 10.1038/nature05962

     

    Gregg P M, Hebert L B, Montési L G J, et al. 2012. Geodynamic models of melt generation and extraction at mid-ocean ridges. Oceanography, 25(1):78-88. doi: 10.5670/oceanog

     

    Hoernle K, Schwindrofska A, Werner R, et al. 2016. Tectonic dissection and displacement of parts of Shona hotspot volcano 3500 km along the Agulhas-Falkland fracture zone. Geology, 44(4):263-266. doi: 10.1130/G37582.1

     

    Jian H C, Chen Y J, Singh S C, et al. 2017. Seismic structure and magmatic construction of crust at the ultraslow-spreading Southwest Indian Ridge at 50°8'E. Journal of Geophysical Research:Solid Earth, 122(1):18-42. doi: 10.1002/2016JB013377

     

    Jokat W, Hagen C. 2017. Crustal structure of the Agulhas Ridge (South Atlantic Ocean):Formation above a hotspot? Tectonophysics, 716:21-32. https://www.researchgate.net/publication/306089804_Crustal_structure_of_the_Agulhas_Ridge_South_Atlantic_Ocean_Formation_above_a_hotspot

     

    Kerr A C, Mahoney J J. 2007. Oceanic plateaus:Problematic plumes, potential paradigms. Chemical Geology, 241(3-4):332-353. doi: 10.1016/j.chemgeo.2007.01.019

     

    Klein E M, Langmuir C H. 1987. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. Journal of Geophysical Research:Solid Earth, 92(B8):8089-8115. doi: 10.1029/JB092iB08p08089

     

    Kuo B Y, Forsyth D W. 1988. Gravity anomalies of the ridge-transform system in the South Atlantic between 31 and 34.5°S:Upwelling centers and variations in crustal thickness. Marine Geophysical Research, 10(3-4):205-232. doi: 10.1007/BF00310065

     

    Li J B, Jian H B, Chen Y J, et al. 2015. Seismic observation of an extremely magmatic accretion at the ultraslow spreading Southwest Indian Ridge. Geophysical Research Letters, 42(8):2656-2663. doi: 10.1002/2014GL062521

     

    Li S Z, Suo Y H, Yu S, et al. 2015. Morphotectonics and tectonic processes of the southwest IndianOcean. Geotectonica et Metallogenia (in Chinese), 39(1):15-29. https://www.researchgate.net/publication/297683083_Crustal_thickness_anomalies_in_the_Indian_Ocean_inferred_from_gravity_analysis

     

    Lin J, Morgan J P. 1992. The spreading rate dependence of three-dimensional mid-ocean ridge gravity structure. Geophysical Research Letters, 19(1):13-16. doi: 10.1029/91GL03041

     

    Lu L, Yan L L, Li Q H, et al. 2016. Oceanic plateau and its significances on the Earth system:A review. Acta Petrologica Sinica (in Chinese), 32(6):1851-1876. https://www.researchgate.net/publication/233030680_Latitudinal_gradients_in_temperature_over_North_America_during_the_early_Eocene_using_a_combined_oxygen_isotope_-_paleobotanical_approach

     

    Mendel V, Sauter D, Rommevaux-Jestin C, et al. 2003. Magmato-tectonic cyclicity at the ultra-slow spreading Southwest Indian Ridge:Evidence from variations of axial volcanic ridge morphology and abyssal hills pattern. Geochemistry, Geophysics, Geosystems, 4(5):09102, doi:10.1029/2002GC000417.

     

    Meyzen C M, Toplis M J, Humler E, et al. 2003. A discontinuity in mantle composition beneath the southwest Indian ridge. Nature, 421(6924):731-733. doi: 10.1038/nature01424

     

    Minshull T A, Muller M R, White R S. 2006. Crustal structure of the Southwest Indian Ridge at 66°E:Seismic constraints. Geophysical Journal International, 166(1):135-147. doi: 10.1111/gji.2006.166.issue-1

     

    Morgan J P, Forsyth D W. 1988. Three-dimensional flow and temperature perturbations due to a transform offset:Effects on oceanic crustal and upper mantle structure. Journal of Geophysical Research:Solid Earth, 93(B4):2955-2966. doi: 10.1029/JB093iB04p02955

     

    Muller M R, Robinson C J, Minshull T A, et al. 1997. Thin crust beneath ocean drilling program borehole 735B at the Southwest Indian Ridge?. Earth and Planetary Science Letters, 148(1-2):93-107. doi: 10.1016/S0012-821X(97)00030-7

     

    Muller M R, Minshull T A, White R S, et al. 1999. Segmentation and melt supply at the Southwest Indian Ridge. Geology, 27(10):267-273. http://www.researchgate.net/publication/240669682_Segmentation_and_melt_supply_at_the_Southwest_Indian_Ridge

     

    Müller R D, Sdrolias M, Gaina C, et al. 2008. Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochemistry, Geophysics, Geosystems, 9(4):Q04006, doi:10.1029/2007GC1743.

     

    Niu X W, Ruan A G, Li J B, et al. 2015. Along-axis variation in crustal thickness at the ultraslow spreading Southwest Indian Ridge (50°E) from a wide-angle seismic experiment. Geochemistry, Geophysics, Geosystems, 16(2):468-485. doi: 10.1002/2014GC005645

     

    Niu Y L, O'Hara M J. 2008. Global correlations of ocean ridge basalt chemistry with axial depth:A new perspective. Journal of Petrology, 49(4):633-664. doi: 10.1093/petrology/egm051

     

    Sandwell D T, Müller R D, Smith W H F, et al. 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205):65-67. doi: 10.1126/science.1258213

     

    Sauter D, Cannat M, Meyzen C, et al. 2009. Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46°E and 52°20' E:Interaction with the Crozet hotspot?. Geophysical Journal International, 179(2):687-699. doi: 10.1111/gji.2009.179.issue-2

     

    Sauter D, Cannat M. 2010. The ultraslow spreading southwest Indian ridge. //Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington, DC: American Geophysical Union, 188: 153-173.

     

    Sauter D, Cannat M, Rouméjon S, et al. 2013. Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years. Nature Geoscience, 6(4):314-320. doi: 10.1038/ngeo1771

     

    Schmidt-Aursch M C, Jokat W. 2016. 3D gravity modelling reveals off-axis crustal thickness variations along the western Gakkel Ridge (Arctic Ocean). Tectonophysics, 691:85-97. doi: 10.1016/j.tecto.2016.03.021

     

    Recq M, Goslin J, Charvis P, et al. 1998.Small-scale crustal variability within an intraplate structure:the Crozet Bank (southern Indian Ocean). Geophysical Journal International, 134:145-156. doi: 10.1046/j.1365-246x.1998.00530.x

     

    Sclater J G, Grindlay N R, Madsen J A, et al. 2005. Tectonic interpretation of the Andrew Bain transform fault:Southwest Indian Ocean. Geochemistry, Geophysics, Geosystems, 6(9):Q09K10, doi:10.1029/2005GC000951.

     

    Stagg H M J, Colwel J B, Direen N G, et al. 2004. Geology of the continental margin of Enderby and Mac. Robertson lands, east Antarctica:Insights from a regional data set. Marine Geophysical Research, 25(3-4):183-219. doi: 10.1007/s11001-005-1316-1

     

    Stein C A, Stein S. 1992. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359(6391):123-129. doi: 10.1038/359123a0

     

    Suo Y H, Li S Z, Li X Y, et al. 2016. Crustal thickness anomalies in the Indian Ocean inferred from gravity analysis. Geological Journal, 51(S1):634-643. https://www.researchgate.net/publication/297683083_Crustal_thickness_anomalies_in_the_Indian_Ocean_inferred_from_gravity_analysis

     

    Suo Y H, Li S Z, Li X Y, et al. 2017. The potential hydrothermal systems unexplored in the Southwest Indian Ocean. Marine Geophysical Research, 38(1-2):61-70. doi: 10.1007/s11001-016-9300-5

     

    Turcotte D L, Schubert G. 2014. Geodynamics. 3rd ed. Cambridge:Cambridge University Press.

     

    Van Ark E, Lin J. 2004. Time variation in igneous volume flux of the Hawaii-Emperor hot spot seamount chain. Journal of Geophysical Research:Solid Earth, 109(B11):B11401, doi:10.1029/2003JB002949.

     

    Wang T T, Lin J, Tucholke B, et al. 2011. Crustal thickness anomalies in the North Atlantic Ocean basin from gravity analysis. Geochemistry, Geophysics, Geosystems, 12(3):Q0AE02, doi:10.1029/2010GC003402.

     

    Wang T T, Tucholke B E, Lin J. 2015. Spatial and temporal variations in crustal production at the Mid-Atlantic Ridge, 25°N-27°30'N and 0~27 Ma. Journal of Geophysical Research:Solid Earth, 120(4):2119-2142. doi: 10.1002/2014JB011501

     

    Weatherall P, Marks K M, Jakobsson M, et al. 2015. A new digital bathymetric model of the world's oceans. Earth and Space Science, 2(8):331-345. doi: 10.1002/2015EA000107

     

    White R S, McKenzie D, O'Nions R K. 1992. Oceanic crustal thickness from seismic measurements and rare earth element inversions. Journal of Geophysical Research:Solid Earth, 97(B13):19683-19715. doi: 10.1029/92JB01749

     

    Whittaker J M, Goncharov A, Williams S E, et al. 2013. Global sediment thickness data set updated for the Australian-Antarctic Southern Ocean. Geochemistry, Geophysics, Geosystems, 14(8):3297-3305. doi: 10.1002/ggge.20181

     

    Yang A Y, Zhao T P, Zhou M F, et al. 2017. Isotopically enriched N-MORB:A new geochemical signature of off-axis plume-ridge interaction-a case study at 50°28'E, Southwest Indian ridge. Journal of Geophysical Research:Solid Earth, 122(1):191-213. doi: 10.1002/2016JB013284

     

    Zhang T, Gao J Y. 2011. Characters of magmatic activity and tectonics on the ultraslow spreading ridge in the southwest Indian Ocean. Advances in Marine Science (in Chinese), 29(3):314-322. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HBHH201103008.htm

     

    Zhang T, Lin J, Gao J Y. 2013. Magmatism and tectonic processes in Area A hydrothermal vent on the Southwest Indian ridge. Science China Earth Sciences, 56(12):2186-2197. doi: 10.1007/s11430-013-4630-5

     

    Zhang T, Gao J Y, Chen M, et al. 2015. Mantle melting factors and amagmatic crustal accretion of the Gakkel ridge, Arctic Ocean. Acta Oceanologica Sinica, 34(6):42-48. doi: 10.1007/s13131-015-0686-8

     

    Zhao M H, Qiu X L, Li J B, et al. 2013. Three-dimensional seismic structure of the Dragon Flag oceanic core complex at the ultraslow spreading Southwest Indian Ridge (49°39'E). Geochemistry, Geophysics, Geosystems, 14(10):4544-4563. doi: 10.1002/ggge.20264

     

    Zhou H Y, Dick H J B. 2013. Thin crust as evidence for depleted mantle supporting the Marion Rise. Nature, 494(7436):195-200. doi: 10.1038/nature11842

     

    李三忠, 索艳慧, 余珊等. 2015.西南印度洋构造地貌与构造过程.大地构造与成矿学, 39(1):15-29. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201311013.htm

     

    陆鹿, 严立龙, 李秋环等. 2016.洋底高原及其对地球系统意义研究综述.岩石学报, 32(6):1851-1876. https://mall.cnki.net/qikan-DXQY200101001.html

     

    张涛, 高金耀. 2011.西南印度洋中脊超慢速扩张的构造和岩浆活动特征.海洋科学进展, 29(3):314-322. http://www.cqvip.com/QK/91338A/201103/39208237.html

     

    张涛, Lin J, 高金耀. 2013.西南印度洋中脊热液区的岩浆活动与构造特征.中国科学:地球科学, 43(11):1834-1846. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201311013.htm

  • 加载中

(7)

计量
  • 文章访问数:  860
  • PDF下载数:  374
  • 施引文献:  0
出版历程
收稿日期:  2017-08-14
修回日期:  2017-09-14
上线日期:  2018-07-05

目录