基于波形拟合的中国东海地区410 km间断面附近速度结构研究

李文兰, 魏荣强, 崔清辉, 高雅健, 周元泽. 2018. 基于波形拟合的中国东海地区410 km间断面附近速度结构研究. 地球物理学报, 61(1): 150-160, doi: 10.6038/cjg2018L0370
引用本文: 李文兰, 魏荣强, 崔清辉, 高雅健, 周元泽. 2018. 基于波形拟合的中国东海地区410 km间断面附近速度结构研究. 地球物理学报, 61(1): 150-160, doi: 10.6038/cjg2018L0370
LI WenLan, WEI RongQiang, CUI QingHui, GAO YaJian, ZHOU YuanZe. 2018. Velocity structure around the 410 km discontinuity beneath the East China Sea area based on the waveform fitting method. Chinese Journal of Geophysics (in Chinese), 61(1): 150-160, doi: 10.6038/cjg2018L0370
Citation: LI WenLan, WEI RongQiang, CUI QingHui, GAO YaJian, ZHOU YuanZe. 2018. Velocity structure around the 410 km discontinuity beneath the East China Sea area based on the waveform fitting method. Chinese Journal of Geophysics (in Chinese), 61(1): 150-160, doi: 10.6038/cjg2018L0370

基于波形拟合的中国东海地区410 km间断面附近速度结构研究

  • 基金项目:

    国家自然科学基金(41474070,41704090)和中国科学院战略性先导科技专项(XDB18010304)联合资助

详细信息
    作者简介:

    李文兰, 中国科学院大学在读硕士研究生, 主要从事地球内部结构与地震波传播方面的研究工作.E-mail:liwenlan15@mails.ucas.ac.cn

    通讯作者: 崔清辉, 中国科学院大学博士后, 主要从事地球深部速度结构及地幔间断面形态方面的研究工作.E-mail:qinghuicui@ucas.ac.cn
  • 中图分类号: P315

Velocity structure around the 410 km discontinuity beneath the East China Sea area based on the waveform fitting method

More Information
  • 410 km间断面是地幔转换带的顶界面,对其速度结构和起伏形态开展地震学探测有助于认识地球内部物质组成和相关的地球动力学过程.本文选取了由中国数字地震台网记录到的位于琉球俯冲区的一个中源地震P波宽频带波形资料,利用三重震相波形拟合研究了中国东海地区410 km间断面附近的精细速度结构.结果表明:中国东海地区下方410 km间断面整体表现为一尖锐的速度界面且有8~15 km的小幅抬升;该间断面之上存在52~62 km厚的低速层,其P波速度降低0.5%~1.6%;440 km深度以下存在1.0%~3.0%的P波高速异常.结合前人在该地区的层析成像结果,我们推测该高速异常体与西太平洋俯冲板片在中国东海地区地幔转换带内的滞留有关;板片内水相E分解使得转换带内水含量增加,这引发了410 km间断面的抬升;410 km间断面之上的低速层应与含水矿物脱水导致的地幔橄榄岩部分熔融有关.

  • 加载中
  • 图 1 

    本文所用地震事件和台站位置图

    Figure 1. 

    Map showing the locations of the earthquake and stations used in this study

    图 2 

    不同P波速度模型下的合成波形及走时曲线

    Figure 2. 

    Synthetics and travel-times of P-wave triplications for different velocity models

    图 3 

    子区域Ⅰ和Ⅱ的波形拟合结果

    Figure 3. 

    Waveform fitting results of sub-region Ⅰ and Ⅱ

    图 4 

    子区域Ⅲ—Ⅵ的波形拟合结果

    Figure 4. 

    Waveform fitting results of sub-regions Ⅲ—Ⅵ

    图 5 

    各台站观测和合成波形的互相关系数

    Figure 5. 

    Cross-correlation coefficient between observed and synthetic waveforms for all stations

    图 6 

    中国东海及其邻区地球动力学过程示意图

    Figure 6. 

    The schematic illustration depicting the geodynamics beneath the East China Sea and adjacent area

    表 1 

    本文所用地震事件震源参数列表

    Table 1. 

    Source parameters of the earthquake event used in this study

    年-月-日时:分:秒深度
    /km
    纬度
    /(°N)
    经度
    /(°E)
    震级
    /MW
    2016-03-1407:03:17.71210.529.889128.9575.5
    下载: 导出CSV

    表 2 

    子区域Ⅰ—Ⅵ的速度模型

    Table 2. 

    The velocity models of sub-regions Ⅰ—Ⅵ

    模型低速层上界
    面深度/km
    410深度
    /km
    低速层厚度
    /km
    低速异常440之下
    高速异常
    ECS134040262-1.0%1.5%
    ECS234039555-1.6%1.0%
    ECS335040252-1.0%3.0%
    ECS434040262-0.5%2.0%
    ECS534040262-0.5%2.0%
    ECS634040262-1.5%2.0%
    下载: 导出CSV
  •  

    Bercovici D, Karato S I. 2003. Whole-mantle convection and the transition-zone water filter. Nature, 425(6953):39-44, doi:10.1038/nature01918.

     

    Buland R, Chapman C H. 1983. The computation of seismic travel times. Bulletin of the Seismological Society of America, 73(5):1271-1302. https://www.mendeley.com/research-papers/computation-seismic-travel-times/

     

    Chen L, Ai Y S. 2009. Discontinuity structure of the mantle transition zone beneath the North China Craton from receiver function migration. Journal of Geophysical Research:Solid Earth, 114(B6):B06307, doi:10.1029/2008JB006221.

     

    Chen W P, Tseng T L. 2007. Small 660-km seismic discontinuity beneath Tibet implies resting ground for detached lithosphere. Journal of Geophysical Research:Solid Earth, 112(B5):B05309, doi:10.1029/2006JB004607.

     

    Chu R S, Schmandt B, Helmberger D V. 2012. Upper mantle P velocity structure beneath the Midwestern United States derived from triplicated waveforms. Geochemistry, Geophysics, Geosystems, 13(2):Q0AK04, doi:10.1029/2011GC003818.

     

    Collier J D, Helffrich G R, Wood B J. 2001. Seismic discontinuities and subduction zones. Phys Earth Planet Inter, 127(1-4):35-49, doi:10.1016/S0031-9201(01)00220-5.

     

    Cui H H, Zhou Y Z, Shi Y L, et al. 2016. Seismic detection of a low-velocity anomaly under the stagnant slab beneath the eastern North China Craton with P-wave triplication. Chinese Journal of Geophysics (in Chinese), 59(4):1309-1320, doi:10.6038/cjg20160413.

     

    DeMets C, Gordon R G, Argus D F, Stein S. 1994. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophysical Research Letters, 21(20):2191-2194, doi:10.1029/94gl02118.

     

    Deuss A. 2009. Global observations of mantle discontinuities using SS and PP precursors. Surveys in Geophysics, 30(4):301-326, doi:10.1007/s10712-009-9078-y.

     

    Dziewonski A M, Anderson D L. 1981. Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4):297-356, doi:10.1016/0031-9201(81)90046-7.

     

    Dziewonski A M, Chou T A, Woodhouse J H. 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research:Solid Earth, 86(B4):2825-2852, doi:10.1029/JB086iB04p02825.

     

    Ekström G, Nettles M, Dziewoński A M. 2012. The global CMT project 2004-2010:Centroid-moment tensors for 13, 017 earthquakes. Physics of the Earth and Planetary Interiors, 200-201:1-9, doi:10.1016/j.pepi.2012.04.002.

     

    Frost D J. 2008. The upper mantle and transition zone. Elements, 4(3):171-176, doi:10.2113/gselements.4.3.171.

     

    Fukao Y, Obayashi M, Nakakuki T. 2009. Stagnant slab:a review. Annual Review of Earth and Planetary Sciences, 37(37):19-46, doi:10.1146/annurev.earth.36.031207.124224.

     

    Fukao Y, Obayashi M. 2013. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. Journal of Geophysical Research:Solid Earth, 118(11):5920-5938, doi:10.1002/2013JB010466.

     

    Gao Y, Suetsugu D, Fukao Y, et al. 2010. Seismic discontinuities in the mantle transition zone and at the top of the lower mantle beneath eastern China and Korea:Influence of the stagnant Pacific slab. Physics of the Earth and Planetary Interiors, 183(1-2):288-295, doi:10.1016/j.pepi.2010.03.009.

     

    Gao Y J, Cui H H, Zhou Y Z. 2017. Seismic detection of P-wave velocity structure atop MTZ beneath the Central Tian Shan and Tarim Basin. Chinese Journal of Geophysics (in Chinese), 60(1):98-111, doi:10.6038/cjg20170109.

     

    Gudmundsson ó, Sambridge M. 1998. A regionalized upper mantle (RUM) seismic model. Journal of Geophysical Research:Solid Earth, 103(B4):7121-7136, doi:10.1029/97jb02488.

     

    Helffrich G. 2000. Topography of the transition zone seismic discontinuities. Reviews of Geophysics, 38(1):141-158, doi:10.1029/1999RG000060.

     

    Hirth G, Kohlstedt D L. 1996. Water in the oceanic upper mantle:implications for rheology, melt extraction and the evolution of the lithosphere. Earth and Planetary Science Letters, 144(1-2):93-108, doi:10.1016/0012-821X(96)00154-9.

     

    Huang H, Wang P, Mi N, et al. 2014a. Lateral Variations of the Mantle Transition Zone Structure beneath Eastern China. Bulletin of the Seismological Society of America, 104(3):1533-1539, doi:10.1785/0120130315.

     

    Huang J L, Zhao D P. 2006. High-resolution mantle tomography of China and surrounding regions. Journal of Geophysical Research:Solid Earth, 111(9):B09305, doi:10.1029/2005JB004066.

     

    Huang R, Xu Y X, Luo Y H, et al. 2014b. Mantle transition zone structure beneath Southeastern China and its implications for stagnant slab and water transportation in the mantle. Pure and Applied Geophysics, 171(9):2129-2136, doi:10.1007/s00024-014-0837-4.

     

    Jiang W W, Hao T Z, Liu S H, et al. 2004. Relativity of geological structure of Chinese continental and East China Sea. Progress in Geophysics (in Chinese), 19(1):75-90, doi:10.3969/j.issn.1004-2903.2004.01.012.

     

    Kennett B L N, Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2):429-465, doi:10.1111/j.1365-246X.1991.tb06724.x.

     

    Kennett B L N, Engdahl E R, Buland R. 1995. Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 122(1):108-124, doi:10.1111/j.1365-246X.1995.tb03540.x.

     

    Komabayashi T. 2013. Phase relations of hydrous peridotite:Implications for water circulation in the Earth's mantle.//Jacobsen S D, Van Der Lee S. Earth's Deep Water Cycle. Washington, D. C.:American Geophysical Union, 29-43, doi:10.1029/168GM04.

     

    Li C, Van Der Hilst R D. 2010. Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography. Journal of Geophysical Research:Solid Earth, 115(B7):B7308, doi:10.1029/2009JB006882.

     

    Li G H, Sui Y, Zhou Y Z. 2014. Low-velocity layer atop the mantle transition zone in the lower Yangtze Craton from P waveform triplication. Chinese Journal of Geophysics (in Chinese), 57(7):2362-2371, doi:10.6038/cjg20140730.

     

    Li J, Wang X, Wang X J, et al. 2013. P and SH velocity structure in the upper mantle beneath Northeast China:Evidence for a stagnant slab in hydrous mantle transition zone. Earth and Planetary Science Letters, 367:71-81, doi:10.1016/j.epsl.2013.02.026.

     

    Nakajima J, Hasegawa A. 2007. Subduction of the Philippine Sea plate beneath southwestern Japan:Slab geometry and its relationship to arc magmatism. Journal of Geophysical Research:Solid Earth, 112(B8):B08306, doi:10.1029/2006JB004770.

     

    Obayashi M, Sugioka H, Yoshimitsu J, et al. 2006. High temperature anomalies oceanward of subducting slabs at the 410-km discontinuity. Earth and Planetary Science Letters, 243(1-2):149-158, doi:10.1016/j.epsl.2005.12.032.

     

    Ohtani E, Maeda M. 2001. Density of basaltic melt at high pressure and stability of the melt at the base of the lower mantle. Earth and Planetary Science Letters, 193(1-2):69-75, doi:10.1016/S0012-821X(01)00505-2.

     

    Ohtani E. 2005. Water in the mantle. Elements, 1(1):25-30, doi:10.2113/gselements.1.1.25.

     

    Revenaugh J, Sipkin S A. 1994. Seismic evidence for silicate melt atop the 410-km mantle discontinuity. Nature, 369(6480):474-476, doi:10.1038/369474a0.

     

    Ringwood A E. 1991. Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochimica et Cosmochimica Acta, 55(8):2083-2110, doi:10.1016/0016-7037(91)90090-R.

     

    Smyth J R, Frost D J. 2002. The effect of water on the 410-km discontinuity:An experimental study. Geophysical Research Letters, 29(10):123-1-123-4, doi:10.1029/2001GL014418.

     

    Song T R A, Helmberger D V, Grand S P. 2004. Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States. Nature, 427(6974):530-533, doi:10.1038/nature02231.

     

    Song T R A, Helmberger D V. 2013. Low velocity zone atop the transition zone in the western US from S waveform triplication.//Jacobsen S D, Van Der Lee S. Earth's Deep Water Cycle. Washington, DC:American Geophysical Union, 195-213, doi:10.1029/168GM15.

     

    Sui Y, Zhou Y Z. 2015. Low-velocity anomaly around 410 km beneath the Yellow and East China Seas with P wave triplications. Acta Seismologica Sinica (in Chinese), 37(1):1-14, doi:10.11939/jass.2015.01.001.

     

    Sun D Y, Miller M S, Holt A F, et al. 2014. Hot upwelling conduit beneath the Atlas Mountains, Morocco. Geophysical Research Letters, 41(22):8037-8044, doi:10.1002/2014GL061884.

     

    Tajima F, Grand S P. 1995. Evidence of high velocity anomalies in the transition zone associated with Southern Kurile Subduction Zone. Geophysical Research Letters, 22(23):3139-3142, doi:10.1029/95GL03314.

     

    Tauzin B, Debayle E, Wittlinger G. 2010. Seismic evidence for a global low-velocity layer within the Earth's upper mantle. Nature Geoscience, 3(10):718-721, doi:10.1038/ngeo969.

     

    Tonegawa T, Hirahara K, Shibutani T. 2005. Detailed structure of the upper mantle discontinuities around the Japan subduction zone imaged by receiver function analyses. Earth, Planets and Space, 57(1):5-14, doi:10.1186/bf03351801.

     

    Van Der Hilst R, Engdahl R, Spakman W, et al. 1991. Tomographic imaging of subducted lithosphere below northwest Pacific island arcs. Nature, 353(6339):37-43, doi:10.1038/353037a0.

     

    Wang B S, Niu F L. 2010. A broad 660 km discontinuity beneath northeast China revealed by dense regional seismic networks in China. Journal of Geophysical Research:Solid Earth, 115(B6):B06308, doi:10.1029/2009jb006608.

     

    Wang Q, Song X, Ren J. 2017. Ambient noise surface wave tomography of marginal seas in east Asia. Earth Planet Phys.1(1):13-25, doi:10.26464/epp2017003.

     

    Wang R J. 1999. A simple orthonormalization method for stable and efficient computation of Green's functions. Bulletin of the Seismological Society of America, 89(3):733-741. https://www.mendeley.com/research-papers/simple-orthonormalization-method-stable-efficient-computation-greens-functions/

     

    Wang T, Chen L. 2009. Distinct velocity variations around the base of the upper mantle beneath northeast Asia. Physics of the Earth and Planetary Interiors, 172(3-4):241-256, doi:10.1016/j.pepi.2008.09.021.

     

    Wang X L, Niu F L. 2011. Imaging the mantle transition zone beneath eastern and central China with CEArray receiver functions. Earthquake Science, 24(1):65-75, doi:10.1007/s11589-011-0770-x.

     

    Wang Y, Wen L X, Weidner D, et al. 2006. SH velocity and compositional models near the 660-km discontinuity beneath South America and northeast Asia. Journal of Geophysical Research:Solid Earth, 111(B7):B07305, doi:10.1029/2005JB003849.

     

    Wessel P, Smith W H. 1998. New, improved version of generic mapping tools released. EOS, 79(47):579-579, doi:10.1029/98EO00426.

     

    Wood B J. 1995. The effect of H2O on the 410-kilometer seismic discontinuity. Science, 268(5207):74-76, doi:10.1126/science.268.5207.74.

     

    Ye L L, Li J. 2012. Detecting velocity structure around 660-km discontinuity beneath Northeastern China. Acta Seismologica Sinica (in Chinese), 34(2):137-146, doi:10.3969/j.issn.0253-3782.2012.02.002.

     

    Zhang R Q, Wu Q J, Li Y H, et al. 2012. Lateral variations in SH velocity structure of the transition zone beneath Korea and adjacent regions. Journal of Geophysical Research:Solid Earth, 117(B9):B09315, doi:10.1029/2011JB008900.

     

    Zhang R Q, Gao Z Y, Wu Q J, et al. 2016. Seismic images of the mantle transition zone beneath Northeast China and the Sino-Korean craton from P-wave receiver functions. Tectonophysics, 675:159-167, doi:10.1016/j.tecto.2016.03.002.

     

    Zhao D P. 2004. Global tomographic images of mantle plumes and subducting slabs:insight into deep Earth dynamics. Physics of the Earth and Planetary Interiors, 146(1-2):3-34, doi:10.1016/j.pepi.2003.07.032.

     

    Zheng X F, Ouyang B, Zhang D N, et al. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake. Chinese Journal of Geophysics (in Chinese), 52(5):1412-1417, doi:10.3969/j.issn.0001-5733.2009.05.031.

     

    Zhou C Y, Jin Z M, Zhang J F. 2010. An important field in the studies of Earth's deep interior. Earth Science Frontiers (in Chinese), 17(3):90-113. https://www.nsf.gov/pubs/2011/nsf11548/nsf11548.htm

     

    Zhou X Y, Ma M N, Xu Z S. 2014. Progress of the low velocity zone atop the mantle transition zone. Progress in Geophysics (in Chinese), 29(4):1615-1625, doi:10.6038/pg20140417.

     

    崔辉辉, 周元泽, 石耀霖等. 2016.华北克拉通东部滞留板块下方低速异常的地震三重震相探测.地球物理学报, 59(4):1309-1320, doi:10.6038/cjg20160413. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqwx201604013&dbname=CJFD&dbcode=CJFQ

     

    高雅健, 崔辉辉, 周元泽. 2017.中天山和塔里木盆地下方地幔转换带顶部P波速度结构探测.地球物理学报, 60(1):98-111, doi:10.6038/cjg20170109. http://www.cqvip.com/QK/94718X/201701/671126136.html

     

    江为为, 郝天珧, 刘少华等. 2004.中国东部大陆与东海海域地质构造的相关性分析.地球物理学进展, 19(1):75-90, doi:10.3969/j.issn.1004-2903.2004.01.012.

     

    李国辉, 眭怡, 周元泽. 2014.基于P波三重震相的下扬子克拉通地幔转换带顶部低速层初探.地球物理学报, 57(7):2362-2371, doi:10.6038/cjg20140730. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqwx201407030&dbname=CJFD&dbcode=CJFQ

     

    眭怡, 周元泽. 2015.利用三重震相探测中国东部海域410km深度低速层.地震学报, 37(1):1-14, doi:10.11939/jass.2015.01.001.

     

    叶玲玲, 李娟. 2012.东北地区660km间断面附近波速结构研究.地震学报, 34(2):137-146, doi:10.3969/j.issn.0253-3782.2012.02.002.

     

    郑秀芬, 欧阳飚, 张东宁等. 2009. "国家数字测震台网数据备份中心"技术系统建设及其对汶川大地震研究的数据支撑.地球物理学报, 52(5):1412-1417, doi:10.3969/j.issn.0001-5733.2009.05.031. http://d.wanfangdata.com.cn/Periodical/dqwlxb200905031

     

    周春银, 金振民, 章军锋. 2010.地幔转换带:地球深部研究的重要方向.地学前缘, 17(3):90-113. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201003010.htm

     

    周晓亚, 马麦宁, 徐志双. 2014.地幔过渡带顶面低速层的研究进展.地球物理学进展, 29(4):1615-1625, doi:10.6038/pg20140417.

  • 加载中

(6)

(2)

计量
  • 文章访问数:  625
  • PDF下载数:  746
  • 施引文献:  0
出版历程
收稿日期:  2017-06-16
修回日期:  2017-08-29
上线日期:  2018-01-05

目录