中国海-西太平洋地区典型剖面的重-磁-震联合反演研究

张正一, 范建柯, 白永良, 董冬冬. 2018. 中国海-西太平洋地区典型剖面的重-磁-震联合反演研究. 地球物理学报, 61(7): 2871-2891, doi: 10.6038/cjg2018L0301
引用本文: 张正一, 范建柯, 白永良, 董冬冬. 2018. 中国海-西太平洋地区典型剖面的重-磁-震联合反演研究. 地球物理学报, 61(7): 2871-2891, doi: 10.6038/cjg2018L0301
ZHANG ZhengYi, FAN JianKe, BAI YongLiang, DONG DongDong. 2018. Joint inversion of gravity-magnetic-seismic data of a typical profile in the China Sea-Western Pacific area. Chinese Journal of Geophysics (in Chinese), 61(7): 2871-2891, doi: 10.6038/cjg2018L0301
Citation: ZHANG ZhengYi, FAN JianKe, BAI YongLiang, DONG DongDong. 2018. Joint inversion of gravity-magnetic-seismic data of a typical profile in the China Sea-Western Pacific area. Chinese Journal of Geophysics (in Chinese), 61(7): 2871-2891, doi: 10.6038/cjg2018L0301

中国海-西太平洋地区典型剖面的重-磁-震联合反演研究

  • 基金项目:

    全球变化与海气相互作用专项(GASI-GEOGE-02),国家自然科学基金(41506059),中国海陆地质地球物理系列图项目(GZH200900504)和中国科学院战略性先导科技专项(XDA11030102)联合资助

详细信息
    作者简介:

    张正一, 男, 1992年生, 目前为中国科学院海洋研究所在读博士, 主要从事海底构造与地球物理研究.E-mail:zhangzy_iocas@foxmail.com

    通讯作者: 范建柯, 男, 1985年生, 中国科学院海洋研究所副研究员, 主要从事海洋地球物理与海底构造研究.E-mail:fanjianke@qdio.ac.cn
  • 中图分类号: P738

Joint inversion of gravity-magnetic-seismic data of a typical profile in the China Sea-Western Pacific area

More Information
  • 重-磁-震联合反演是获取地壳结构的重要方法.此次研究,我们主要基于全球最新的水深、重磁异常、沉积物厚度等数据,结合实测地震数据和前人研究成果,分析了中国海-西太平洋地区的莫霍面展布特征,并利用重磁震联合反演方法获得了跨越中国海-西太平洋典型剖面的地壳结构和异常体分布,揭示了陆壳到洋壳的典型变化规律.结果表明,从浙江地区到马里亚纳俯冲带,地壳结构大致呈现由厚到薄、由老到新、由复杂到简单的特征.浙江地区(扬子块体和华夏块体)地壳结构复杂,三层结构明显,地壳内断裂带发育,并伴有广泛的岩浆侵入;东海地区莫霍面起伏剧烈,地壳厚度变化较大,冲绳海槽地壳明显减薄,是其过渡壳性质的体现;西菲律宾海盆、九州-帕劳海脊、帕里西维拉海盆、马里亚纳俯冲带等构造单元地壳结构相对简单,二层结构明显.其中,西菲律宾海盆和帕里西维拉海盆地壳内部磁异常变化较为剧烈,海盆扩张过程中形成的磁异常体分布广泛,地壳厚度(5~8 km)明显小于陆壳;九州-帕劳海脊地壳厚度可达~20 km,缺失中地壳,表现为岛弧地壳结构;同源的西马里亚纳岛弧和东马里亚纳火山弧地壳结构相似,浅层磁异常体分布广泛,西马里亚纳岛弧地壳厚度(~17 km)略小于东马里亚纳火山弧(~20 km),体现了裂离的不对称性;马里亚纳海槽具有正常的洋壳结构(~7 km),但扩张中心未发生明显破裂.对比各构造单元地壳结构的异同点,我们进一步认识到,陆壳与洋壳之间不是孤立的,陆壳可能会演化出洋壳的结构或组分,板块的演化总是处于动态循环过程中.此研究加深了我们对中国海-西太平洋深部构造特征的整体理解,促进了我们对大陆边缘演化与板块相互作用的认识,深化了我国管辖海域及邻近地区的基础地质调查.

  • 加载中
  • 图 1 

    中国海—西太平洋地区构造纲要图

    Figure 1. 

    The tectonic outline in the China Sea-Western Pacific area

    图 2 

    重力场反演莫霍面埋深流程图(Bai et al., 2014)

    Figure 2. 

    The flow chart of Moho depth inversion based on the gravity field (Bai et al., 2014)

    图 附图 1 

    中国海—西太平洋地区典型剖面的重-磁-震联合反演结果及解释

    图 3 

    中国海—西太平洋地区地壳厚度图

    Figure 3. 

    The crust thickness in China Sea-West Pacific area

    图 4 

    浙江地区典型剖面的重-磁-震联合反演结果及解释

    Figure 4. 

    The gravity-magnetic-seismic joint inversion and interpretation for the typical profile across Zhejiang area, in which the magnetic fitting curve 4a, the gravity fitting curve 4b, the velocity profile for reference 4c and the crustal structure and abnormal bodies distribution 4d are shown, respectively. The single numbers in 4c and 4d denote the velocity (km·s-1) and density respectively, whereas the numbers (e.g., 0.003/0/0/0) in 4d denote the induced magnetization, residual magnetization, inclination and declination of the abnormal bodies, whose units are cgs, A·m-1 and degree, respectively

    图 5 

    东海地区典型剖面的重-磁-震联合反演结果及解释

    Figure 5. 

    The gravity-magnetic-seismic joint inversion and interpretation for the typical profile across the East China Sea, in which the magnetic fitting curve 5a, the gravity fitting curve 5b, the velocity profile for reference 5c and the crustal structure and abnormal bodies distribution 5d are shown, respectively. The single numbers in 5c and 5d denote the velocity (km·s-1) and density respectively, whereas the numbers (e.g., 0.003/0/0/0) in 5d denote the induced magnetization, residual magnetization, inclination and declination of the abnormal bodies, whose units are cgs, A·m-1 and degree, respectively

    图 6 

    西菲律宾海盆典型剖面的重-磁-震联合反演结果及解释

    Figure 6. 

    The gravity-magnetic-seismic joint inversion and interpretation for the typical profile across the West Philippine Basin, in which the magnetic fitting curve 6a, the gravity fitting curve 6b, the velocity profile for reference 6c and the crustal structure and abnormal bodies distribution 6d are shown, respectively. The single numbers in 6c and 6d denote the velocity (km·s-1) and density respectively, whereas the numbers (e.g., 0.003/0/0/0) in 6d denote the induced magnetization, residual magnetization, inclination and declination of the abnormal bodies, whose units are cgs, A·m-1 and degree, respectively

    图 7 

    九州—帕劳海脊典型剖面的重-磁-震联合反演结果及解释

    Figure 7. 

    The gravity-magnetic-seismic joint inversion and interpretation for the typical profile across Kyushu-Palau ridge, in which the magnetic fitting curve 7a, the gravity fitting curve 7b, the velocity profile for reference 7c and the crustal structure and abnormal bodies distribution 7d are shown, respectively. The single numbers in 7c and 7d denote the velocity (km·s-1) and density respectively, whereas the numbers (e.g., 0.003/0/0/0) in 7d denote the induced magnetization, residual magnetization, inclination and declination of the abnormal bodies, whose units are cgs, A·m-1 and degree, respectively

    图 8 

    帕里西维拉海盆典型剖面的重-磁-震联合反演结果及解释

    Figure 8. 

    The gravity-magnetic-seismic joint inversion and interpretation for the typical profile across Parece Vela Basin, in which the magnetic fitting curve 8a, the gravity fitting curve 8b, the velocity profile for reference 8c and the crustal structure and abnormal bodies distribution 8d are shown, respectively. The single numbers in 8c and 8d denote the velocity (km·s-1) and density respectively, whereas the numbers (e.g., 0.003/0/0/0) in 8d denote the induced magnetization, residual magnetization, inclination and declination of the abnormal bodies, whose units are cgs, A·m-1 and degree, respectively

    图 9 

    马里亚纳俯冲带典型剖面的重-磁-震联合反演结果及解释

    Figure 9. 

    The gravity-magnetic-seismic joint inversion and interpretation for the typical profile across Mariana Subduction Zone, in which the magnetic fitting curve 9a, the gravity fitting curve 9b, the velocity profile for reference 9c and the crustal structure and abnormal bodies distribution 9d are shown, respectively. The single numbers in 9c and 9d denote the velocity (km·s-1) and density respectively, whereas the numbers (e.g., 0.003/0/0/0) in 9d denote the induced magnetization, residual magnetization, inclination and declination of the abnormal bodies, whose units are cgs, A·m-1 and degree, respectively

    表 1 

    多道地震采集参数

    Table 1. 

    Parameters of the multichannel seismic acquisition

    气枪总容积(in3) 震源工作压力(psi) 道间距(m) 接收电缆道数 放炮间距(m) 记录长度(s)
    1300 2000 12.5 120 50 12
    下载: 导出CSV

    表 2 

    各岩性及地层层位密度值表

    Table 2. 

    The density of various lithology and layers

    层位或岩性名称 海水层 沉积层 中酸性火山岩
    密度(g·cm-3) 1.03 2.3~2.6 2.55~2.75
    层位或岩性名称 上地壳 中地壳 下地壳 上洋壳 下洋壳 地幔
    密度(g·cm-3) 2.7 2.8 2.9 2.78 2.9 3.22~3.33
    下载: 导出CSV

    表 3 

    东海地区钻井岩芯磁化率、剩磁、密度值统计表

    Table 3. 

    Magnetic susceptibility, remanent magnetization and density of the drilling cores in the East China Sea

    岩性 磁化率
    (×10-6 CGS)
    剩磁
    (×10-3A/M)
    沉积岩 泥岩 12 0
    粉砂岩 11 0
    砂岩 14 0
    中粗砂岩 16 0
    火成岩 酸性火成岩 凝灰岩 28 0
    凝灰角砾岩 47 0
    花岗岩 104 19
    中性火成岩 安山质角砾岩 750 122
    安山岩 400 457
    花岗闪长岩 12 0
    基性火成岩 玄武岩 1150 2241
    变质岩 片麻岩 0 0
    下载: 导出CSV

    表 4 

    浙江地区岩石磁化率统计表

    Table 4. 

    Magnetic susceptibility of the rocks in Zhejiang area

    岩石类型 磁化率(×10-6 CGS)
    岩类 地层 岩石名称 变化范围 常见值
    沉积岩 第四系-震旦系 砂、砾、粘土、各种泥岩、砂岩、砾岩、页岩、灰岩等 0~200 ≤50
    侏罗系 砂岩、粉砂岩 10~2600 200
    泥灰质砂砾岩 5~2000 100
    火成岩 新第三系 玄武岩 150~2900 1150
    辉绿岩 40~5600 1660
    老第三系 玄武岩 16834
    白垩系 玄武质凝灰砂砾岩 1600
    安山质凝灰砂砾岩 3040
    安山玢岩 4416
    玄武岩、玄武玢岩 2231~1750
    流纹岩 20~980 40
    凝灰岩 0~390 30
    侏罗系 凝灰岩 0~5400 150~300
    流纹岩 10~700 65
    安山岩 14~2800 430
    中酸质火山岩 0
    晶屑熔凝灰岩 800
    流纹岩、流纹斑岩 1000
    英安质凝灰岩 2000
    安山岩类 31781
    玄武玢岩 600~4500
    流纹岩 931
    凝灰熔岩 2157
    侵入岩 燕山期 花岗岩 9~2145 1500
    闪长岩 1276~4240 2150
    石英闪长岩 8500~39000
    石英斑岩 0~2600 130
    变质岩 陈蔡群 斜长角闪岩 990
    混合岩化黑云母斜长片麻岩 248
    石英岩 255
    下载: 导出CSV
  •  

    Amante C, Eakins B W. 2009. ETOPO1 1 Arc-minute global relief model: Procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24.

     

    Arisaka M, Shinohara M, Yamada T, et al. 2003. Seismic structure of uppermost mantle and crust beneath West Philippine Basin and Kyusyu-Palau ridge by seafloor borehole seismometer, OBS and airgun experiment. //American Geophysical Union, Fall Meeting 2003, Abstracts. Washington, DC: American Geophysical Union.

     

    Asano S, Wada K, Yoshii T, et al. 1985. Crustal structure in the northern part of the Philippine Sea plate as derived from seismic observations of Hatoyama-off Izu Peninsula explosions.Journal of Physics of the Earth, 33(3):173-189, doi:10.4294/jpe1952.33.173.

     

    Bai Y L, Williams S E, Müller R D, et al. 2014. Mapping crustal thickness using marine gravity data:Methods and uncertainties. Geophysics, 79(2):G27-G36, doi:10.1190/GEO2013-0270.1.

     

    Bai Z M, Wu Q J, Xu T, et al. 2016. Basic features of crustal structure in the lower Yangtze and its neighboring area of Chinese mainland:Review of deep seismic sounding research. Earthquake Research in China (in Chinese), 32(2):180-192. https://link.springer.com/article/10.1007%2Fs11430-016-9096-6

     

    Bown J W, White R S. 1994. Variation with spreading rate of oceanic crustal thickness and geochemistry.Earth and Planetary Science Letters, 121(3-4):435-449, doi:10.1016/0012-821X(94)90082-5.

     

    Chamot-Rooke N, Renard V, Le Pichon X. 1987. Magnetic anomalies in the Shikoku Basin:A new interpretation. Earth and Planetary Science Letters, 83(1-4):214-228, doi:10.1016/0012-821X(87)90067-7.

     

    Chen J, Wen N, Chen B Y. 2007. Joint inversion of gravity-magnetic-electrical-seismic combination survey:Progress and prospect. Progress in Geophysics (in Chinese), 22(5):1427-1438, doi:10.3969/j.issn.1004-2903.2007.05.013.

     

    Chen Y J. 1992. Oceanic crustal thickness versus spreading rate.Geophysical Research Letters, 19(8):753-756, doi:10.1029/92GL00161.

     

    Christensen N I, Mooney W D. 1995. Seismic velocity structure and composition of the continental crust:A global view. Journal of Geophysical Research:Solid Earth, 100(B6):9761-9788, doi:10.1029/95JB00259.

     

    Chu Y, Faure M, Lin W, et al. 2012. EarlyMesozoic tectonics of the South China block:Insights from the Xuefengshan intracontinental orogen. Journal of Asian Earth Sciences, 61:199-220, doi:10.1016/j.jseaes.2012.09.029.

     

    DengY F, Li S L, Fan W M, et al. 2011. Crustal structure beneath South China revealed by deep seismic soundings and its dynamics implications. Chinese Journal of Geophysics (in Chinese), 54(10):2560-2574, doi:10.3969/j.issn.0001-5733.2011.10.013.

     

    Deschamps A, Lallemand S. 2002. TheWest Philippine basin:An Eocene to early Oligocene back arc basin opened between two opposed subduction zones. Journal of Geophysical Research:Atmospheres, 107(B12):EPM 1-1-EPM 1-24, doi:10.1029/2001JB001706.

     

    Divins D L, Rabinowitz P D. 1990. Thickness of sedimentary cover for the South Atlantic. //Udintsev G B ed. International Geological-Geophysical Atlas of the Atlantic Ocean. Moscow: Intergovernmental Oceanographic Commission, 126-127.

     

    Divins D L. 2003. Total sediment thickness of the world's oceans and marginal seas. Boulder, CO: NOAA National Geophysical Data Center.

     

    Faccenna C, Becker T W, Lallemand S, et al. 2010. Subduction-triggered magmatic pulses:A new class of plumes? Earth and Planetary Science Letters, 299(1-2):54-68, doi:10.1016/j.epsl.2010.08.012.

     

    Fan X L, Lu G X, Jiang H K, et al. 1992. The crust-mantle lithosphere structure and the paleozoic basins on the northern margin of Yangtze plate.South China Journal of Seismology (in Chinese), 12(4):46-52, doi:10.13512/j.hndz.1992.04.006.

     

    Fang Y X, Liu J H. 2004. The crustal structure character of East China Sea.Donghai Marine Science (in Chinese), 22(3):9-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hytb-e200502001

     

    Fei D. 1983. On the structural feature and the oceanization in the north part of South China Sea.Acta Geophysical Sinica (in Chinese), 26(5):459-467. http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX198305005.htm

     

    Gaina C, Müller R D, Roest W R, et al. 1998. Theopening of the Tasman Sea:A gravity anomaly animation. Earth Interactions, 2(4):1-23, doi:10.1175/1087-3562(1998)002<0001:TOOTTS>2.3.CO;2.

     

    Gao D Z, Zhao J H, Bo Y L, et al. 2004. A profile study of gravitative-magnetic and seismic comprehensive survey in the East China Sea.Chinese Journal of Geophysics (in Chinese), 47(5):853-861. https://www.researchgate.net/publication/264296338_A_Profile_of_Gravity-Magnetic_and_Seismic_Comprehensive_Survey_in_the_East_China_Sea

     

    Goodman D. 1983. Seismic refraction survey of crustal and upper mantle structures in the West Philippine Basin. Corvallis, OR: Oregon State University.

     

    Goodman D, Bibee L D, Dorman L M. 1989. Crustal Seismic Structure Beneath The West Philippine Sea, 17°-18° North. Marine Geophysical Researches, 11(3):155-168, doi:10.1007/BF00340202.

     

    Han B. 2008. Geophysical field and deep tectonic features of East China Sea (in Chinese).Qingdao:The Institute of Oceanology, Chinese Academy of Sciences.

     

    Hao T Y, Xu Y, Xu Y, et al. 2006. Some new understandings on deep structure in Yellow Sea and East China Sea.Chinese Journal of Geophysics (in Chinese), 49(2):458-468. doi: 10.1002/cjg2.v49.2

     

    Hayes D E, Labrecque J L. 1991. Sediment isopachs: Circum-Antarctic to 30°S. //Hayes D E ed. Marine Geological and Geophysical Atlas of the Circum-Antarctic to 30°S. Washington, DC: American Geophysical Union, 29-33.

     

    Hickey-Vargas R. 2005. Basalt and tonalite from the Amami Plateau, northern West Philippine Basin:New Early Cretaceous ages and geochemical results, and their petrologic and tectonic implications. Island Arc, 14(4):653-665, doi:10.1111/j.1440-1738.2005.00474.x.

     

    Hilde T W C, Lee C S. 1984. Origin and evolution of the West Philippine Basin:A new interpretation. Tectonophysics, 102(1-4):85-104, doi:10.1016/0040-1951(84)90009-X.

     

    Hu L T, Hao T Y, Xing J, et al. 2016. The Moho depth in the China Sea-West Pacific and its geological implications.Chinese Journal of Geophysics (in Chinese), 59(3):871-883, doi:10.6038/cjg20160310.

     

    Huismans R, Beaumont C. 2011. Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins.Nature, 473(7345):74-78, doi:10.1038/nature09988.

     

    Hussong D M, Uyeda S, Blanchet R, et al. 1982a. Site 457: Mariana island arc. //Hussong D M, Uyeda S, Blanchet R, et al eds. Initial Reports of the Deep Sea Drilling Project. Washington, DC: U. S. Government Printing Office, 60: 255-261, doi: 10.2973/dsdp.proc.60.113.1982.

     

    Hussong D M, Uyeda S, Blanchet R, et al. 1982b. Site 459: Mariana fore-arc. //Hussong D M, Uyeda S, Blanchet R, et al eds. Initial Reports of the Deep Sea Drilling Project. Washington, DC: U. S. Government Printing Office, 60: 309-369, doi: 10.2973/dsdp.proc.60.115.1982.

     

    Hussong D M, Uyeda S, Blanchet R, et al. 1982c. Site 453: West side of the Mariana trough. //Hussong D M, Uyeda S, Blanchet R, et al eds. Initial Reports of the Deep Sea Drilling Project. Washington, DC: U. S. Government Printing Office, 60: 101-167, doi: 10.2973/dsdp.proc.60.108.1982.

     

    Hussong D M, Uyeda S, Blanchet R, et al. 1982d. Site 454: Near the center of the Mariana Trough. //Hussong D M, Uyeda S, Blanchet R, et al eds. Initial Reports of the Deep Sea Drilling Project. Washington, DC: U. S. Government Printing Office, 60: 169-202, doi: 10.2973/dsdp.proc.60.109.1982.

     

    Ingle J C Jr, Karing D E, Bouma A H, et al. 1975. Site 294/295. //Ingle J C Jr, Karing D E, Bouma A H et al eds. Initial Reports of the Deep Sea Drilling Project. Washington, DC: U. S. Government Printing Office, 31: 169-189, doi: 10.2973/dsdp.proc.31.106.1975.

     

    Ishizuka O, Taylor R N, Yuasa M, et al. 2011. Making and breaking an island arc:A new perspective from the Oligocene Kyushu-Palau arc, Philippine Sea. Geochemistry, Geophysics, Geosystems, 12(5):Q05005, doi:10.1029/2010GC003440.

     

    Jiang W W, Liu S H, Hao T Y, et al. 2003. Character of geophysical field and crustal structure of Okinawa Trough and adjacent region.Progress in Geophysics (in Chinese), 18(2):287-292, doi:10.3969/j.issn.1004-2903.2003.02.017.

     

    Jin C, Qian J F, Zhou L Y, et al. 2015. Structural system and decoupling between deep and shallow in lithosphere of Zhejiang province-from gravity and magentic field characteristics. Bulletin of Science and Technology (in Chinese), 31(1):27-33, doi:10.13774/j.cnki.kjtb.2015.01.007.

     

    Karig D E. 1972.Remnant arcs. Geological Society of America Bulletin, 83(4):1057-1068, doi:10.1130/0016-7606(1972)832.0.CO;2.

     

    Kearey P, Klepeis K A, Vine F J. 2009. Global Tectonics. 3rd ed. Hoboken, NJ:Wiley-Blackwell.

     

    Kong X R, Xiong S B, Zhou W X, et al. 1995. New progress on deep geophysical research in Zhejiang:Geological sections of Tunxi-Wenzhou and Zhuji-Linhai and the achivements of their regioral gravity. Geology of Zhejiang (in Chinese), 11(1):50-62.

     

    Kroenke L, Scott R, Balshaw K, et al. 1981a. Site 448: Palau-Kyushu ridge. //Kroenke L, Scott R, Balshaw K, et al eds. Initial Reports of the Deep Sea Drilling Project. Washington, DC: U. S. Government Printing Office, 59: 111-319, doi: 10.2973/dsdp.proc.59.103.1981.

     

    Kroenke L, Scott R, Balshaw K, et al. 1981b. Site 449: West side of the Parece Vela Basin. //Kroenke L, Scott R, Balshaw K, et al eds. Initial Reports of the Deep Sea Drilling Project. Washington, DC: U. S. Government Printing Office, 59: 321-353, doi: 10.2973/dsdp.proc.59.104.1981.

     

    Kroenke L, Scott R, Balshaw K, et al. 1981c. Site 450: East side of the Parece Vela Basin. //Kroenke L, Scott R, Balshaw K, et al eds. Initial Reports of the Deep Sea Drilling Project. Washington, DC: U. S. Government Printing Office, 59: 355-403, doi: 10.2973/dsdp.proc.59.105.1981.

     

    Kroenke L, Scott R, Balshaw K, et al. 1981d. Site 451: East edge of the West Mariana Ridge. //Kroenke L, Scott R, Balshaw K et al eds. Initial Reports of the Deep Sea Drilling Project. Washington, DC: U. S. Government Printing Office, 59: 405-483, doi: 10.2973/dsdp.proc.59.106.1981.

     

    Lallemand S. 2016. Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction.Progress in Earth and Planetary Science, 3:15, doi:10.1186/s40645-016-0085-6.

     

    Le J Y, Xu W L. 1992. A introduction of crustal structure in the East China Sea.Chinese Geology (in Chinese), (6):29-30.

     

    LePichon X. 1969. Models and structure of the oceanic crust. Tectonophysics, 7(5-6):385-401, doi:10.1016/0040-1951(69)90008-0.

     

    Li S Z, Hou F H, Lü H Q, et al. 2004. Interactions of ridge-plume, plume-trench and trench-ridge.Marine Geology Letters (in Chinese), 20(11):1-5, doi:10.16028/j.1009-2722.2004.11.001.

     

    LiY K, Dong S W, Zhang Z J, et al. 2002. Poisson's ratio structure of the crust and UHP metamorphic zone in the Dabie Orogenic Belt-A suggestion from wide-angle and subvertical seismic reflection sounding. Geological Review (in Chinese), 48(1):15-23, doi:10.16509/j.georeview.2002.01.004.

     

    Lin Z, Zhang L, Zhong G J. 2013. The application of gravity magnetic seismic joint inversion to the comprehensive interpretation of geophysics in the northern South China Sea.Geophysical and Geochemical Exploration (in Chinese), 37(6):968-975, doi:10.11720/j.issn.1000-8918.2013.6.02.

     

    Liu G D. 1998. Geology of China Sea and its Adjacent Area. Beijing:Geological Publishing House.

     

    Liu G D. 2007. Geophysical fields and hydrocarbon resources of China seas.Progress in Geophysics (in Chinese), 22(4):1229-1237, doi:10.3969/j.issn.1004-2903.2007.04.032.

     

    Lu L, Yan L L, Li Q H, et al. 2016.Oceanic plateau and its significances on the Earth system:A review. Acta Petrologica Sinica (in Chinese), 32(6):1851-1876. https://www.researchgate.net/publication/233030680_Latitudinal_gradients_in_temperature_over_North_America_during_the_early_Eocene_using_a_combined_oxygen_isotope_-_paleobotanical_approach

     

    Luan X W, Gao D Z, Yu P Z, et al. 2001. The crust velocity structure of a profile in the area of East China Sea and its vicinity.Progress in Geophysics (in Chinese), 16(2):28-34, doi:10.3969/j.issn.1004-2903.2001.02.004.

     

    Ludwig W J, Houtz R E, Delach M, et al. 1980. Isopach Map of Sediments in the Pacific Ocean Basin and Marginal Sea Basins. USA, School of Geosciences Faculty and Staff Publications, 246.

     

    Luo D, Zhang X H, Cai F, et al. 2014. Integrated gravity-magnetic-seismic data inversion and interpretation and their application to underwater tectonics.Marine Geology & Quaternary Geology (in Chinese), 34(6):135-143. http://en.cnki.com.cn/Article_en/CJFDTotal-HYDZ201406017.htm

     

    McKenzie D. 1978. Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40(1):25-32, doi:10.1016/0012-821X(78)90071-7.

     

    Molnar P, Atwater T, Mammerickx J, et al.1975. Magnetic Anomalies, bathymetry and the tectonic evolution of the South Pacific since the Late Cretaceous. Geophysical Journal International, 40(3):383-420, doi:10.1111/j.1365-246X.1975.tb04139.x.

     

    Mrozowski C L, Hayes D E. 1979. The evolution of the Parece Vela Basin, eastern Philippine Sea.Earth and Planetary Science Letters, 46(1):49-67, doi:10.1016/0012-821X(79)90065-7.

     

    Murauchi S, Den N, Asano S, et al.1968. Crustal structure of the Philippine Sea. Journal of Geophysical Research, 73(10):3143-3171. doi: 10.1029/JB073i010p03143

     

    Nguuri T K, Gore J, James D E, et al. 2001. Crustal structure beneath southern Africa and its implications for the formation and evolution of the Kaapvaal and ZimbabweCratons. Geophysical Research Letters, 28(1):2501-2504, doi:10.1029/2000GL012587.

     

    Nishizawa A, Kaneda K, Katagiri Y, et al. 2007. Variation in crustal structure along the Kyushu-Palau Ridge at 15-21°N on the Philippine Sea plate based on seismic refraction profiles.Earth, Planets and Space, 59(6):e17-e20, doi:10.1186/BF03352711.

     

    Nishizawa A, Kaneda K, Oikawa M. 2009. Seismic structure of the northern end of the Ryukyu Trench subduction zone, southeast of Kyushu, Japan.Earth, Planets and Space, 61(8):e37-e40, doi:10.1186/BF03352942.

     

    Nishizawa A, Kaneda K, Katagiri Y, et al. 2014. Wide-angle refraction experiments in the Daito Ridges region at the northwestern end of the Philippine Sea plate.Earth, Planets and Space, 66:25, doi:10.1186/1880-5981-66-25.

     

    Okino K, Shimakawa Y, Nagaoka S. 1994. Evolution of the Shikoku Basin.Earth, Planets and Space, 46(6):463-479, doi:10.5636/jgg.46.463.

     

    Okino K, Kasuga S, Ohara Y. 1998. A new scenario of the Parece Vela Basin Genesis. Marine Geophysical Researches, 20(1):21-40, doi:10.1023/A:1004377422118.

     

    Pérez-Gussinyé M, Morgan J P, Reston T J, et al. 2006. The rift to drift transition at non-volcanic margins:Insights from numerical modelling. Earth and Planetary Science Letters, 244(1-2):458-473, doi:10.1016/j.epsl.2006.01.059.

     

    Rudnick R L, Fountain D M. 1995. Nature and composition of the continental crust:A lower crustal perspective. Reviews of Geophysics, 33(3):267-309, doi:10.1029/95RG01302.

     

    Sandwell D T, Müller R D, Smith W H F, et al. 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205):65-67, doi:10.1126/science.1258213.

     

    Seton M, Flament N, Whittaker J, et al. 2015. Ridge subduction sparked reorganization of the Pacific plate-mantle system 60-50 million years ago.Geophysical Research Letters, 42(6):1732-1740, doi:10.1002/2015GL063057.

     

    Shervais J W, Choi S H. 2012. Subduction initiation along transform faults:The proto-Franciscan subduction zone. Lithosphere, 4(6):484-496, doi:10.1130/L153.1.

     

    Stern R J, Fouch M J, Klemperer S L. 2003. An overview of the Izu-Bonin-Mariana subduction factory. //Eiler J ed. Inside the Subduction Factory. Washington, DC: American Geophysical Union, 138: 175-222, doi: 10.1029/138GM10.

     

    Stern R J, Reagan M, Ishizuka O, et al. 2012. To understand subduction initiation, study forearc crust:To understand forearc crust, study ophiolites. Lithosphere, 4(6):469-483, doi:10.1130/L183.1.

     

    Takahashi N, Kodaira S, Klemperer S L, et al. 2007. Crustal structure and evolution of the Mariana intra-oceanic island arc.Geology, 35(3):203-206, doi:10.1130/G23212A.1.

     

    Taylor S R, McLennan B. 1985. The Continental Crust:Its Composition and Evolution. Oxford:Blackwell Scientific Publication.

     

    Taylor S R, McLennan S M. 1995. The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2):241-265, doi:10.1029/95RG00262.

     

    Teng J W. 2008. The prelude to the research of fine structures of crust and upper mantle and continental dynamics in China:Its development trends and enlightenment from deep seismic reflection exploration of the Qaidam basin in 1958. Progress in Geophysics (in Chinese), 23(1):1-13.

     

    Wang C Y, Lou H, Wang F. 1999.Crustal structure in the Dabieshan UHP metamorphic belt and its tectonic implication. Acta Seismologica Sinica (in Chinese), 21(5):533-544. https://rd.springer.com/content/pdf/10.1007/s11589-999-0058-6.pdf

     

    Wang M J. 1985.An investigation into the crustal structure of South China in terms of gravity field. Geophysical & Geochemical Exploration (in Chinese), 9(3):161-169. https://www.researchgate.net/post/What_is_the_best_way_for_Gravity_Magnetic_anomaly_maps_generation_for_different_layer_contact_depths_like_1000m_or_1500m

     

    Weissel J K, Watts A B. 1979. Tectonic evolution of the Coral Sea Basin.Journal of Geophysical Research:Solid Earth, 84(B9):4572-4582, doi:10.1029/JB084iB09p04572.

     

    Whattam S A, Stern R J. 2015. Late Cretaceous plume-induced subduction initiation along the southern margin of the Caribbean and NW South America:The first documented example with implications for the onset of plate tectonics. Gondwana Research, 27(1):38-63, doi:10.1016/j.gr.2014.07.011.

     

    Wilson J T. 1973. Mantle plumes and plate motions.Tectonophysics, 19(2):149-164, doi:10.1016/0040-1951(73)90037-1.

     

    Xu Y G, He B, Huang X L, et al. 2007.The debate over mantle plumes and how to test the plume hypothesis. Earth Science Frontiers (in Chinese), 14(2):1-9. doi: 10.1016/S1872-5791(07)60011-6

     

    Yang W C, Chen Z X, Hou Z Z, et al. 2016. Crustal density structures around Chinese continent by inversion of satellite gravity data.Acta Geologica Sinica (in Chinese), 90(9):2167-2175. https://link.springer.com/article/10.1007/s00024-017-1691-y

     

    Yu J F, Jiang W W, Hao T Y, et al. 2015. Lithosphere structure and geodynamics characteristics of China eastern seas and adjacent region.Progress in Geophysics (in Chinese), 30(3):1100-1109, doi:10.6038/pg20150314.

     

    Yu J H, O'Reilly Y S, Wang L J, et al. 2007. Finding of ancient materials in Cathaysia and implication for the formation of Precambrian crust. Chinese Science Bulletin, 52(1):13-22. doi: 10.1007/s11434-007-0008-4

     

    Zahirovic S, Seton M, Müller R D. 2014. The Cretaceous and Cenozoic tectonic evolution of Southeast Asia. Solid Earth, 5(1):227-273, doi:10.5194/se-5-227-2014.

     

    Zhang G Q, Wang Q S, Yu Y P, et al. 2012. Stratigraphic age and subdivision of volcanic rocks in eastern Zhejiang.Journal of Stratigraphy (in Chinese), 36(3):641-652. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ201203016.htm

     

    Zhang G W, Guo A L, Wang Y J, et al. 2013. Tectonics of South China continent and its implications.Science China Earth Sciences, 43(10):1553-1582, doi:10.1007/s11430-013-4679-1.

     

    Zhang J, Li J B, Ding W W. 2012. Reviews of the study on crustal structure and evolution of the Kyushu-Palau Ridge.Advances in Marine Science (in Chinese), 30(4):595-607. https://pangea.stanford.edu/researchgroups/crustal/sites/default/files/Takahashi.IBM2Dseismic.Geology.2007.pdf

     

    Zhang X H, Shang L N. 2014. Study on crustal structure and nature of the Okinawa Trough.Periodical of Ocean University of China (in Chinese), 44(6):72-80. http://en.cnki.com.cn/Article_en/CJFDTotal-QDHY201406011.htm

     

    Zhang Z J, Bai Z M, Wang C Y, et al. 2005. Crustal structure of Gondwana-and Yangtze-typed blocks:An example by wide-angle seismic profile from Menglian to Malong in western Yunnan. Science China Series D:Earth Sciences, 48(11):1828-1836, doi:10.1360/03yd0547.

     

    Zheng Y F, Ye K, Zhang L F. 2009. Developing the plate tectonics from oceanic subduction to continental collision.Chinese Science Bulletin, 54(15):2549-2555. https://www.researchgate.net/profile/Yong-Fei_Zheng/publication/225371493_Developing_the_plate_tectonics_from_oceanic_subduction_to_continental_collision/links/53fe73ed0cf283c3583bd798.pdf?disableCoverPage=true

     

    白志明, 吴庆举, 徐涛等. 2016.中国大陆下扬子及邻区地壳结构基本特征:深地震测深研究综述.中国地震, 32(2):180-192. http://www.cqvip.com/QK/95750X/201602/670069084.html

     

    陈洁, 温宁, 陈邦彦. 2007.重磁电震联合反演研究进展与展望.地球物理学进展, 22(5):1427-1438, doi:10.3969/j.issn.1004-2903.2007.05.013.

     

    邓阳凡, 李守林, 范蔚茗等. 2011.深地震测深揭示的华南地区地壳结构及其动力学意义.地球物理学报, 54(10):2560-2574, doi:10.3969/j.issn.0001-5733.2011.10.013. http://www.geophy.cn//CN/abstract/abstract8196.shtml

     

    范小林, 陆国新, 蒋洪堪等. 1992.扬子板块北缘壳(慢)岩石圈结构与古生代盆地.华南地震, 12(4):46-52, doi:10.13512/j.hndz.1992.04.006.

     

    方银霞, 刘建华. 2004.东海的地壳结构特征.东海海洋, 22(3):9-17. https://mall.cnki.net/lunwen-2008117235.html

     

    费鼎. 1983.南海北部区域构造和陆壳向洋壳的转化.地球物理学报, 26(5):459-467. http://www.geophy.cn//CN/abstract/abstract5189.shtml

     

    高德章, 赵金海, 薄玉玲等. 2004.东海重磁地震综合探测剖面研究.地球物理学报, 47(5):853-861. http://www.geophy.cn//CN/abstract/abstract565.shtml

     

    韩波. 2008.东海地球物理场及深部地质构造研究.青岛:中国科学院研究生院(海洋研究所).

     

    郝天珧, 徐亚, 胥颐等. 2006.对黄海-东海研究区深部结构的一些新认识.地球物理学报, 49(2):458-468. http://www.geophy.cn//CN/abstract/abstract172.shtml

     

    胡立天, 郝天珧, 邢健等. 2016.中国海-西太平洋莫霍面深度分布特征及其地质意义.地球物理学报, 59(3):871-883, doi:10.6038/cjg20160310. http://www.geophy.cn//CN/abstract/abstract12606.shtml

     

    江为为, 刘少华, 郝天珧等. 2003.冲绳海槽及其邻域地球物理场与地壳结构特征.地球物理学进展, 18(2):287-292, doi:10.3969/j.issn.1004-2903.2003.02.017.

     

    孔祥儒, 熊绍伯, 周文星等. 1995.浙江省深部地球物理研究新进展-屯溪-温州、诸暨-临海地学断面及区域重力研究成果.浙江地质, 11(1):50-62. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zjdz199501005&dbname=CJFD&dbcode=CJFQ

     

    乐俊英, 许薇龄. 1992.东海地壳结构构造简介.中国地质, (6):29-30. http://www.cnki.com.cn/Article/CJFDTOTAL-SHAD200303000.htm

     

    李三忠, 侯方辉, 吕海青等. 2004.洋中脊-地幔柱、地幔柱-海沟与海沟-洋中脊相互作用.海洋地质动态, 20(11):1-5, doi:10.16028/j.1009-2722.2004.11.001.

     

    李英康, 董树文, 张中杰等. 2002.大别造山带地壳泊松比结构与超高压变质带-来自宽角反射与近垂直反射剖面的启示.地质论评, 48(1):15-23, doi:10.16509/j.georeview.2002.01.004.

     

    林珍, 张莉, 钟广见. 2013.重磁震联合反演在南海东北部地球物理解释中的应用.物探与化探, 37(6):968-975, doi:10.11720/j.issn.1000-8918.2013.6.02.

     

    刘光鼎. 1998.中国海区及邻域地质-地球物理系列图-1:5000000.北京:地质出版社.

     

    刘光鼎. 2007.中国海地球物理场与油气资源.地球物理学进展, 22(4):1229-1237, doi:10.3969/j.issn.1004-2903.2007.04.032.

     

    陆鹿, 严立龙, 李秋环等. 2016.洋底高原及其对地球系统意义研究综述.岩石学报, 32(6):1851-1876. https://mall.cnki.net/qikan-DXQY200101001.html

     

    栾锡武, 高德章, 喻普之等. 2001.中国东海及邻近海域一条剖面的地壳速度结构研究.地球物理学进展, 16(2):28-34, doi:10.3969/j.issn.1004-2903.2001.02.004.

     

    骆迪, 张训华, 蔡峰等. 2014.重磁震联合反演及综合解释在海域构造解释中的应用.海洋地质与第四纪地质, 34(6):135-143. http://www.cqvip.com/QK/96122X/201406/663531489.html

     

    滕吉文. 2008.中国地壳、上地幔精细结构和大陆动力学研究的序幕-从1958年柴达木沉积盆地深部地震反射探测看半个世纪来该科学领域的发展导向和启迪.地球物理学进展, 23(1):1-13.

     

    王椿镛, 楼海, 王飞. 1999.大别山超高压变质带地壳结构及其构造意义.地震学报, 21(5):533-544. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199901002.htm

     

    王懋基. 1985.根据重力场研究华南地壳结构.物探与化探, 9(3):161-169. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200503018.htm

     

    徐义刚, 何斌, 黄小龙等. 2007.地幔柱大辩论及如何验证地幔柱假说.地学前缘, 14(2):1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200702000.htm

     

    杨文采, 陈召曦, 侯遵泽等. 2016.从卫星重力资料看中国及邻区地壳密度结构.地质学报, 90(9):2167-2175. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201609005

     

    于津海, O'Reilly Y S, 王丽娟等. 2007.华夏地块古老物质的发现和前寒武纪地壳的形成.科学通报, 52(1):11-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200701002

     

    余景锋, 江为为, 郝天珧等. 2015.中国东部海区及其邻域岩石层结构与地球动力学特征研究.地球物理学进展, 30(3):1100-1109, doi:10.6038/pg20150314.

     

    张国全, 王勤生, 俞跃平等. 2012.浙江东部火山岩地区的地层时代和划分.地层学杂志, 36(3):641-652. http://www.oalib.com/paper/4872894

     

    张国伟, 郭安林, 王岳军等. 2013.中国华南大陆构造与问题.中国科学:地球科学, 43(10):1553-1582, doi:10.1007/s11430-013-4679-1.

     

    张洁, 李家彪, 丁巍伟. 2012.九州-帕劳海脊地壳结构及其形成演化的研究综述.海洋科学进展, 30(4):595-607. http://industry.wanfangdata.com.cn/yj/Column/Paper?q=%e5%85%b3%e9%94%ae%e8%af%8d%3a%22mantle+plume%22+DBID%3aWF_QK+%e5%88%86%e7%b1%bb%e5%8f%b7%3a%22P*%22&f=sort&o=sortby+date

     

    张训华, 尚鲁宁. 2014.冲绳海槽地壳结构与性质研究进展和新认识.中国海洋大学学报, 44(6):72-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qdhydxxb201406011

     

    郑永飞, 叶凯, 张立飞. 2009.发展板块构造:从洋壳俯冲到大陆碰撞.科学通报, 54(13):1799-1803. http://www.cqvip.com/QK/94252X/200913/31086499.html

  • 加载中

(10)

(4)

计量
  • 文章访问数:  1312
  • PDF下载数:  583
  • 施引文献:  0
出版历程
收稿日期:  2017-05-13
修回日期:  2018-01-22
上线日期:  2018-07-05

目录