基于角弹性参数的多波地震储层预测方法

高建虎, 桂金咏, 李胜军, 刘炳杨, 王洪求, 陈启艳. 2018. 基于角弹性参数的多波地震储层预测方法. 地球物理学报, 61(6): 2459-2470, doi: 10.6038/cjg2018L0165
引用本文: 高建虎, 桂金咏, 李胜军, 刘炳杨, 王洪求, 陈启艳. 2018. 基于角弹性参数的多波地震储层预测方法. 地球物理学报, 61(6): 2459-2470, doi: 10.6038/cjg2018L0165
GAO JianHu, GUI JinYong, LI ShengJun, LIU BingYang, WANG HongQiu, CHEN QiYan. 2018. Reservoir prediction of multi-component seismic data based on angle-elastic parameters. Chinese Journal of Geophysics (in Chinese), 61(6): 2459-2470, doi: 10.6038/cjg2018L0165
Citation: GAO JianHu, GUI JinYong, LI ShengJun, LIU BingYang, WANG HongQiu, CHEN QiYan. 2018. Reservoir prediction of multi-component seismic data based on angle-elastic parameters. Chinese Journal of Geophysics (in Chinese), 61(6): 2459-2470, doi: 10.6038/cjg2018L0165

基于角弹性参数的多波地震储层预测方法

  • 基金项目:

    国家重大科技专项(2016ZX05007-006)与中石油重大科技专项(2016B-0603)联合资助

详细信息
    作者简介:

    高建虎, 男, 1970年生, 博士, 高级工程师, 主要从事叠前地震反演及储层预测研究.E-mail:gaojh@petrochina.com.cn

    通讯作者: 桂金咏, 男, 1986年生, 工程师, 主要从事地震储层预测研究.E-mail:guijy@petrochina.com.cn
  • 中图分类号: P631

Reservoir prediction of multi-component seismic data based on angle-elastic parameters

More Information
  • 弹性参数作为反映岩石弹性性质的参数,在储层预测中具有重要作用.常规弹性参数的构建主要基于PP波地震信息.PP波与PS波地震振幅因其携带的信息不同,对岩性与流体的敏感性也不同.本文提出联合利用PP波与PS波弹性阻抗以及角度信息构建角弹性参数来预测有利储层.首先,对常规PS波弹性阻抗方程进行重新推导,使得PS波弹性阻抗取值的数量级不随角度变化且能够与PP波弹性阻抗具备形式上的匹配;其次,根据常规弹性参数构建公式,采用PP波弹性阻抗、PS波弹性阻抗替代纵波阻抗、横波阻抗,提出角弹性参数的概念及构建公式,从而将角度信息引入到弹性参数的构建中;最后,在PP波与PS波弹性阻抗反演的基础上构建得到对储层敏感性较强的角弹性参数,利用角弹性参数的取值特征预测有利储层.模型与实际资料测试均表明角弹性参数具备较高的储层敏感性.

  • 加载中
  • 图 1 

    角弹性参数储层预测流程

    Figure 1. 

    Flowchart for reservoir prediction based on angle-elastic parameters

    图 2 

    模型曲线

    Figure 2. 

    Model curves

    图 3 

    PS波反射系数近似精度分析

    Figure 3. 

    Approximate accuracy analysis of PS wave reflection coefficient

    图 4 

    SEI方程得到的不同角度PS波弹性阻抗曲线

    Figure 4. 

    SEI curves calculated by conventional SEI equation

    图 5 

    SEI方程得到的不同角度PS波弹性阻抗曲线

    Figure 5. 

    SEI curves calculated by new SEI equation

    图 6 

    储层敏感性分析

    Figure 6. 

    Sensibility analysis

    图 7 

    敏感性对比

    Figure 7. 

    Sensibility comparison

    图 8 

    敏感性随角度变化特征

    Figure 8. 

    Variation of sensibility with angle

    图 9 

    测井曲线

    Figure 9. 

    Logging curves

    图 10 

    单井常规弹性参数(黑色)与相应的角弹性参数曲线(红色)

    Figure 10. 

    Conventional elastic parameters (black curves) and corresponding angle-elastic parameters curves (red curves)

    图 11 

    地震数据剖面

    Figure 11. 

    Seismic data

    图 12 

    反演结果对比

    Figure 12. 

    Comparison of inversion results

    表 1 

    常规弹性参数与角弹性参数计算式

    Table 1. 

    Calculation formulas of conventional and angle elastic parameters

    名称 常规弹性参数 角弹性参数
    泊松比
    剪切模量×密度 μρ=IS2 A(θ)μρ=SEI(θ)2
    纵横波速度比
    拉梅参数×密度 λρ=IP2-2IS2 A(θ)λρ=EI(θ)2-2SEI(θ)2
    Gassmann流体项×密度 =IP2-γd2IS2
    (γd干岩纵横波速度比)
    A(θ)=EI(θ)2-γd2SEI(θ)2
    拉梅参数/剪切模量
    下载: 导出CSV

    表 2 

    模型参数

    Table 2. 

    Model parameters

    地层 纵波速度/
    (m·s-1)
    横波速度/
    (m·s-1)
    密度/
    (kg·m-3)
    灰岩 6293.33 3278.96 2710
    白云岩储层 6215.60 3357.55 2730
    灰岩 6293.33 3278.96 2710
    下载: 导出CSV
  •  

    Avseth P, Mukerji T, Mavko G. 2005. Quantitative Seismic Interpretation:Applying Rock Physics Tools to Reduce Interpretation Risk. Cambridge:Cambridge University Press.doi:10.1017/CB09780511600074.

     

    Barnola A, Ibram M. 2014. 3D simultaneous joint PP-PS prestack seismic inversion at Schiehallion field, United Kingdom Continental Shelf. Geophysical Prospecting, 62(2):278-292, doi:10.1111/1365-2478.12077.

     

    Connolly P. 1999. Elastic impedance. The Leading Edge, 18(4):438-452, doi:10.1190/1.143807.

     

    Debski W, Tarantola A. 1995. Information on elastic parameters obtained from the amplitudes of reflected waves. Geophysics, 60(5):1426-1436, doi:10.1190/1.1443877.

     

    Duffaut K, Alsos T, Rognø H, et al. 2000. Shear wave elastic impedance. Leading Edge, 19(11):1222-1229, doi:10.1190/1.1438510.

     

    Fatti J L, Smith G C, Vail P J, et al. 1994. Detection of gas in sandstone reservoirs using AVO analysis:A 3-D seismic case history using the Geostack technique. Geophysics, 59(9):1362-1376, doi:10.1190/1.1443695.

     

    Feng H, Bancroft J C, Russell B. 2007. A comparison of hydrocarbon indicators derived from AVO analysis. //2007 SEG Annual Meeting. San Antonio, Texas: SPE, 279-282.

     

    Gan L D, Zhao B L, Du W H, et al. 2005. The potential analysis of elastic impedance in the lithology and fluid prediction. Geophysical Prospecting for Petroleum (in Chinese), 44(5):504-508, doi:10.3969/j.issn.1000-1441.2005.05.020.

     

    Goodway B, Chen T W, Downton J. 1997. Improved AVO fluid detection and lithology discrimination using Lamé petrophysical parameters; "λρ", μρ, λ/μ fluid stack", from P and S inversions. //1997 SEG Annual Meeting. Dallas, Texas: SPE, 183-186, doi: 10.1190/1.1885795.

     

    Gray D, Goodway B, Chen T W. 1999. Bridging the gap: Using AVO to detect changes in fundamental elastic constants. //1999 SEG Annual Meeting. Houston, Texas: SPE, 852-855, doi: 10.1190/1.1821163.

     

    Gui J Y, Gao J H, Yong X S, et al. 2015a. Inversion of reservoir parameters based on dual-phase media theory. Chinese Journal of Geophysics (in Chinese), 58(9):3424-3438, doi:10.6038/cjg20150934.

     

    Gui J Y, Gao J H, Li S J, et al. 2015b. Reservoir-oriented fluid factor optimization method. Oil Geophysical Prospecting (in Chinese), 50(1):129-135, doi:10.13810/j.cnki.issn.1000-7210.2015.01.020.

     

    Hilterman F J. 1989. Is AVO the seismic signature of rock properties?. //1989 SEG Annual Meeting. Dallas, Texas: SPE, 559-559, doi: 10.1190/1.1889652.

     

    Hou D J, Liu Y, Hu G Q, et al. 2014. Prestack multiwave joint inversion for elastic moduli based on Bayesian theory. Chinese Journal of Geophysics (in Chinese), 57(4):1251-1264, doi:10.6038/cjg20140422.

     

    Huang X D. 1981. Building-up and development of lithologic seismic prospecting. Acta Geophysica Sinica (in Chinese), 24(2):218-228. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX198102009.htm

     

    Kurt H. 2007. Joint inversion of AVA data for elastic parameters by bootstrapping. Computers & Geosciences, 33(3):367-382, doi:10.1016/j.cageo.2006.08.012.

     

    Larsen J A, Margrave G F, Lu H X. 1999. AVO analysis by simultaneous P-P and P-S weighted stacking applied to 3C-3D Seismic data. //1999 SEG Annual Meeting. Houston, Texas: SPE, 721-724, doi: 10.1190/1.1821127.

     

    Lu J, Yang Z, Wang Y, et al. 2015. Joint PP and PS AVA seismic inversion using exact zoeppritz equations. Geophysics, 80(5):R239-R250, doi:10.1190/geo2014-0490.1.

     

    Mallick S. 2012. AVO and elastic impedance. Geophysics, 20(10):1094-1104, doi:10.1190/1.1487239.

     

    Margrave G F, Stewart R R, Larsen J A. 2001. Joint PP and PS seismic inversion. The Leading Edge, 20(9):1048-1052, doi:10.1190/1.1487311.

     

    Mavko G, Mukerji T, Dvorkin J. 2009. The Rock Physics Handbook:Tools for Seismic Analysis of Porous Media. 2nd ed. Cambridge:Cambridge University Press, doi 10.1017/CBO9780511626753.

     

    Nycz J. 2016. Characterizing Heterogeneities in a Clastic Reservoir Using Joint/Simultaneous PP/PS Inversion, 4D Timelapse, Multi Attribute Analysis, and PSDM. //2016 ASEG Annual Meeting. Clayton, Monash: CRISO, doi: 10.1071/ASEG2016ab250.

     

    Pan X P, Zhang G Z, Song J J, et al. 2017. Robust elastic impedance inversion using l1-norm misfit function and constraint regularization. Journal of Central South University, 24(1):227-235, doi:10.1007/s11771-017-3423-y.

     

    Riedel M, Lee M W, Bellefleur G. 2010. Inversion of seismic data for elastic parameters: A tool for gas-hydrate characterization. //Geophysical Characterization of Gas Hydrates. Society of Exploration Geophysicists, doi: 10.1190/1.9781560802197.ch7.

     

    Roberts R, Bedingfield J, Phelps D, et al. 2005. Hybrid inversion techniques used to derive key elastic parameters:A case study from the Nile Delta. The Leading Edge, 24(1):86-92, doi:10.1190/1.1859708.

     

    Russell B H, Hedlin K, Hilterman F J, et al. 2003. Fluid-property discrimination with AVO:A biot-gassmann perspective. Geophysics, 68(1):29-39, doi:10.1190/1.1543192.

     

    Russell B H, Hampson D P, Hirsche K, et al. 2005. Joint simultaneous inversion of PP and PS angle gathers. CREWES Research Report, 17:1-14. http://crewes.com/ForOurSponsors/ResearchReports/abstract.php?file=/ForOurSponsors/ResearchReports/2005/2005-31.pdf

     

    Smith G C, Gidlow P M. 1987. Weighted stacking for rock property estimation and detection of gas. Geophysical Prospecting, 35(9):993-1014, doi:10.1111/j.1365-2478.1987.tb00856.x.

     

    Stewart R R. 1990. Joint P and P-SV inversion: CREWES Research Report, vol. 3. https://www.crewes.org/ForOurSponsors/ResearchReports/abstract.php?file=/ForOurSponsors/ResearchReports/1990.

     

    Ursenbach C. 2003. Can multicomponent or joint AVO inversion improve impedance estimates?. //2003 SEG Annual Meeting. Dallas, Texas: SPE, 161-164, doi: 10.1190/1.1817612.

     

    Veire H H, Landro M. 2006. Simultaneous inversion of PP-and PS seismic data. Geophysics, 71(3):R1-R10, doi:10.1190/1.2194533.

     

    VerWest B, Masters R, Sena A. 2000. Elastic impedance inversion. //2000 SEG Annual Meeting. Calgary, Alberta: SPE, 1580-1582, doi: 10.1190/1.1815713.

     

    Wang B L, Yin X Y, Zhang F C. 2005. Elastic impedance inversion and its application. Progress in Geophysics (in Chinese), 20(1):89-92, doi:10.3969/j.issn.1004-2903.2005.01.017.

     

    Whitcombe D N. 2002. Elastic impedance normalization. Geophysics, 67(1):60-62, doi:10.1190/1.1451331.

     

    Yin X Y, Zong Z Y, Wu G C. 2015. Research on seismic fluid identification driven by rock physics. Science China Earth Sciences, 58(2):159-171, doi:10.1007/s11430-014-4992-3.

     

    Zhao B L. 2007. Theory and Practice of Multi-Component Seismic Technology. Beijing:Petroleum Industry Press.

     

    Zhen X D. 1991. Relationships between converted and non-converted waves and parameter p. Chinese Journal of Geophysics (in Chinese), 34(6):781-787. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX199106012.htm

     

    甘利灯, 赵邦六, 杜文辉等. 2005.弹性阻抗在岩性与流体预测中的潜力分析.石油物探, 44(5):504-508, doi:10.3969/j.issn.1000-1441.2005.05.020.

     

    桂金咏, 高建虎, 雍学善等. 2015a.基于双相介质理论的储层参数反演方法.地球物理学报, 58(9):3424-3438, doi:10.6038/cjg20150934. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract11815.shtml

     

    桂金咏, 高建虎, 李胜军等. 2015b.面向实际储层的流体因子优选方法.石油地球物理勘探, 50(1):129-135, doi:10.13810/j.cnki.issn.1000-7210.2015.01.020.

     

    侯栋甲, 刘洋, 胡国庆等. 2014.基于贝叶斯理论的叠前多波联合反演弹性模量方法.地球物理学报, 57(4):1251-1264, doi:10.6038/cjg20140422. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract10305.shtml

     

    黄绪德. 1981.建立和发展岩性地震勘探法.地球物理学报, 24(2):218-228. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract5352.shtml

     

    王保丽, 印兴耀, 张繁昌. 2005.弹性阻抗反演及应用研究.地球物理学进展, 20(1):89-92, doi:10.3969/j.issn.1004-2903.2005.01.017.

     

    印兴耀, 宗兆云, 吴国忱. 2015.岩石物理驱动下地震流体识别研究.中国科学:地球科学, 45(1):8-21. http://engine.scichina.com/doi/10.1360/zd2015-45-1-8

     

    赵邦六. 2007.多分量地震勘探技术理论与实践.北京:石油工业出版社.

     

    郑晓东. 1991.转换波和非转换波与射线参数p的关系.地球物理学报, 34(6):781-787. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract4612.shtml

  • 加载中

(12)

(2)

计量
  • 文章访问数:  547
  • PDF下载数:  306
  • 施引文献:  0
出版历程
收稿日期:  2017-03-21
修回日期:  2018-03-16
上线日期:  2018-06-05

目录