基于网格走时计算的弯曲界面下菲涅尔体研究

魏脯力, 孙建国. 2018. 基于网格走时计算的弯曲界面下菲涅尔体研究. 地球物理学报, 61(6): 2471-2480, doi: 10.6038/cjg2018L0134
引用本文: 魏脯力, 孙建国. 2018. 基于网格走时计算的弯曲界面下菲涅尔体研究. 地球物理学报, 61(6): 2471-2480, doi: 10.6038/cjg2018L0134
WEI PuLi, SUN JianGuo. 2018. A study of Fresnel volume under a curved interface based on grid traveltime computation. Chinese Journal of Geophysics (in Chinese), 61(6): 2471-2480, doi: 10.6038/cjg2018L0134
Citation: WEI PuLi, SUN JianGuo. 2018. A study of Fresnel volume under a curved interface based on grid traveltime computation. Chinese Journal of Geophysics (in Chinese), 61(6): 2471-2480, doi: 10.6038/cjg2018L0134

基于网格走时计算的弯曲界面下菲涅尔体研究

  • 基金项目:

    国家自然科学基金项目(41274120)资助

详细信息
    作者简介:

    魏脯力, 男, 1993年生, 吉林大学地球探测与信息技术专业在读博士, 主要从事地震波正演及偏移成像研究.E-mail:wei_pl@126.com

    通讯作者: 孙建国, 男, 1956年生, 德国自然科学博士, 教授, 博士生导师, 主要从事地下波动理论与成像技术、计算地球物理、岩石物理、科学计算方法与技术、反射地震资料处理、钻孔电磁探测理论、地球物理中的天线问题、可视化技术及其在地球物理场数值模拟与观测数据解释中的应用等方面的教学和研究工作.E-mail:sun_jg@jlu.edu.cn
  • 中图分类号: P631;P315

A study of Fresnel volume under a curved interface based on grid traveltime computation

More Information
  • 为了研究弯曲界面曲率变化对分辨率的影响,首先推导了垂直入射下来自弯曲界面的反射波和透射波界面菲涅尔带近似的解析公式,证明了公式中曲率为零恰好对应已经被推导的平界面菲涅尔带的解析公式,然后给出了利用网格走时计算方法计算弯曲界面下反射波和透射波菲涅尔体的数值实现策略,这一实现策略同时保证了网格走时计算的精度和菲涅尔体计算的精度,最后对比了不同弯曲界面(不同曲率)下的菲涅尔体相对于平界面(曲率为零)下菲涅尔体的变化.研究结果表明,界面下高速时,向斜弯曲造成菲涅尔体在界面附近变宽,使得分辨率降低;背斜弯曲造成菲涅尔体在界面附近变窄,使得分辨率提高.并且向斜弯曲对分辨率的影响程度要明显大于背斜弯曲.而界面下低速时,结论正好相反.

  • 加载中
  • 图 1 

    菲涅尔体的定义示意图

    Figure 1. 

    Schematic of Fresnel volume

    图 2 

    平界面菲涅尔带计算示意图

    Figure 2. 

    Schematic of computing IFZ for a planar interface

    图 3 

    弯曲界面菲涅尔带计算示意图

    Figure 3. 

    Schematic of computing IFZ for a curved interface

    图 4 

    透射波菲涅尔体的计算过程

    Figure 4. 

    Process of computing Fresnel volume for transmission

    图 5 

    反射波菲涅尔体的计算过程

    Figure 5. 

    Process of computing Fresnel volume for reflection

    图 6 

    反射波菲涅尔体的计算原理示意图

    Figure 6. 

    Schematic of computing Fresnel volume for reflection

    图 7 

    弯曲界面近似示意图

    Figure 7. 

    Schematic of approximate curved interface

    图 8 

    平界面下的菲涅尔体

    Figure 8. 

    Fresnel volume under a planar interface

    图 9 

    弯曲界面模型

    Figure 9. 

    Velocity model with a curved interface

    图 10 

    反射波界面菲涅尔带(IFZ)随界面曲率的变化

    Figure 10. 

    IFZ for reflection from a curved interface changing with different curvatures

    图 11 

    弯曲界面下的反射波菲涅尔体

    Figure 11. 

    Fresnel volume for reflection from a curved interface

    图 12 

    透射波界面菲涅尔带(IFZ)随界面曲率的变化

    Figure 12. 

    IFZ for transmission from a curved interface changing with different curvatures

    图 13 

    弯曲界面下的透射波菲涅尔体

    Figure 13. 

    Fresnel volume for transmission from a curved interface

  •  

    Bai C Y, Li X W, Huang G J, et al. 2014. Simultaneous inversion for velocity and reflector geometry using multi-phase Fresnel volume Rays. Pure and Applied Geophysics, 171(7):1089-1105. doi: 10.1007/s00024-013-0686-6

     

    Črvený V. 2001. Seismic Ray Theory. Cambridge:Cambridge University Press, 372-380.

     

    Črvený V, Soares J E. 1992. Fresnel volume ray tracing. Geophysics, 57(7):902-915. doi: 10.1190/1.1443303

     

    Favretto-Cristini N, Cristini P, Bazelaire E. 2009. What is a seismic reflector like?. Geophysics, 74(1):T13-T23. doi: 10.1190/1.3033216

     

    Hubral P, Schleicher J, Tygel M, et al. 1993. Determination of Fresnel zones from traveltime measurements. Geophysics, 58(5):703-712. doi: 10.1190/1.1443454

     

    Kravtsov Y, Orlov Y. 1990. GeometricalOptics of Inhomogeneous Media. Berlin:Springer-Verlag, 80-87.

     

    Kvasnička M, Črvený V. 1996a. Analytical expressions for Fresnel volumes and interface Fresnel zones of seismic body waves. Part 1:Direct and unconverted reflected waves. Studia Geophysica et Geodaetica, 40(2):136-155. http://gji.oxfordjournals.org/external-ref?access_num=10.1007/BF02296354&link_type=DOI

     

    Kvasnička M, Črvený V. 1996b. Analytical expressions for Fresnel volumes and interface Fresnel zones of seismic body waves. Part 2:Transmitted and converted waves. Head waves. Studia Geophysica et Geodaetica, 40(4):381-397. https://link.springer.com/article/10.1007/BF02300766

     

    Li X W, Bai C Y, Yu Z C. 2014. Simultaneous inversion for velocity and reflector geometry based on the multi-phase Fresnel volume rays. Progress in Geophysics (in Chinese), 29(5):2019-2028, doi:10.6038/pg20140505.

     

    Lindsey J P. 1989. The Fresnel zone and its interpretive significance. The Leading Edge, 8(10):33-39. doi: 10.1190/1.1439575

     

    Rawlinson N, Sambridge M. 2004. Wave front evolution in strongly heterogeneous layered media using the fast marching method. Geophysical Journal International, 156(3):631-647. doi: 10.1111/gji.2004.156.issue-3

     

    Rawlinson N, Sambridge M, Hauser J. 2010. Multipathing, reciprocal traveltime fields and raylets. Geophysical Journal International, 181(2):1077-1092. http://www.mendeley.com/research/multipathing-reciprocal-traveltime-fields-raylets/

     

    Sethian J A. 2001. Evolution, implementation, and application of level set and fast marching methods for advancing fronts. Journal of Computational Physics, 169(2):503-555. doi: 10.1006/jcph.2000.6657

     

    Sheriff R E, Geldart L P. 1982. Exploration Seismology. Cambridge:Cambridge University Press, 152-157.

     

    Sun J G. 1996. The relationship between the first Fresnel zone and the normalized geometrical spreading factor. Geophysical Prospecting, 44(3):351-374. doi: 10.1111/gpr.1996.44.issue-3

     

    Sun Z Q, Sun J G, Han F X. 2009a. Travel-time computation based on linear interpolation and narrow band technique. Oil Geophysical Prospecting (in Chinese), 44(4):436-441. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDQ200904012.htm

     

    Sun Z Q, Sun J G, Han F X. 2009b. Traveltimes computation using linear interpolation and narrow band technique under complex topographical condition. Chinese Journal of Geophysics (in Chinese), 52(11):2846-2853. http://www.oalib.com/paper/1568887

     

    Sun Z Q, Sun J G, Han F X. 2012. The comparison of three schemes for computing seismic wave traveltimes in complex topographical conditions. Chinese Journal of Geophysics (in Chinese), 55(2):560-568, doi:10.6038/j.issn.0001-5733.2012.02.018.

     

    Sun Z Q, Sun J G, Yue Y B, et al. 2015. 3D traveltime computation using fast marching upwind bilinear interpolation method. Chinese Journal of Geophysics (in Chinese), 58(6):2011-2023, doi:10.6038/cjg20150616.

     

    Tang X P, Bai C Y. 2009. Multiple ray tracing within 3-D layered media with the shortest path method. Chinese Journal of Geophysics (in Chinese), 52(10):2635-2643. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX200910027.htm

     

    Ursin B, Favretto-Cristini N, Cristini P. 2014. Fresnel volume and interface Fresnel zone for reflected and transmitted waves from a curved interface in anisotropic media. Geophysics, 79(5):C123-C134. doi: 10.1190/geo2013-0396.1

     

    Wang X S, Qian X F, Li B T. 2006. The first Fresnel zone radius and lateral resolving power of seismic data. Progress in Exploration Geophysics (in Chinese), 29(4):244-248. http://en.cnki.com.cn/Article_en/CJFDTOTAL-KTDQ200604004.htm

     

    关治, 陈景良. 1990.数值计算方法.北京:清华大学出版社, 135-139.

     

    李兴旺, 白超英, 于子超. 2014.菲涅耳体有限频射线多震相走时同时反演成像.地球物理学进展, 29(5):2019-2028, doi:10.6038/pg20140505.

     

    孙章庆, 孙建国, 韩复兴. 2009a.基于线性插值和窄带技术的走时计算方法.石油地球物理勘探, 44(4):436-441.

     

    孙章庆, 孙建国, 韩复兴. 2009b.复杂地表条件下基于线性插值和窄带技术的地震波走时计算.地球物理学报, 52(11):2846-2853. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract978.shtml

     

    孙章庆, 孙建国, 韩复兴. 2012.针对复杂地形的三种地震波走时算法及对比.地球物理学报, 55(2):560-568, doi:10.6038/j.issn.0001-5733.2012.02.018. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract8431.shtml

     

    孙章庆, 孙建国, 岳玉波等. 2015.基于快速推进迎风双线性插值法的三维地震波走时计算.地球物理学报, 58(6):2011-2023, doi:10.6038/cjg20150616. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract11603.shtml

     

    唐小平, 白超英. 2009.最短路径算法下三维层状介质中多次波追踪.地球物理学报, 52(10):2635-2643. doi: 10.3969/j.issn.0001-5733.2009.10.024 http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract1216.shtml

     

    王绪松, 钱雪峰, 李波涛. 2006.第一菲涅尔带半径与地震资料的横向分辨力.勘探地球物理进展, 29(4):244-248. http://mall.cnki.net/magazine/Article/KTDQ200604004.htm

  • 加载中

(13)

计量
  • 文章访问数:  1738
  • PDF下载数:  387
  • 施引文献:  0
出版历程
收稿日期:  2017-06-30
修回日期:  2018-05-17
上线日期:  2018-06-05

目录