A study of Fresnel volume under a curved interface based on grid traveltime computation
-
摘要:
为了研究弯曲界面曲率变化对分辨率的影响,首先推导了垂直入射下来自弯曲界面的反射波和透射波界面菲涅尔带近似的解析公式,证明了公式中曲率为零恰好对应已经被推导的平界面菲涅尔带的解析公式,然后给出了利用网格走时计算方法计算弯曲界面下反射波和透射波菲涅尔体的数值实现策略,这一实现策略同时保证了网格走时计算的精度和菲涅尔体计算的精度,最后对比了不同弯曲界面(不同曲率)下的菲涅尔体相对于平界面(曲率为零)下菲涅尔体的变化.研究结果表明,界面下高速时,向斜弯曲造成菲涅尔体在界面附近变宽,使得分辨率降低;背斜弯曲造成菲涅尔体在界面附近变窄,使得分辨率提高.并且向斜弯曲对分辨率的影响程度要明显大于背斜弯曲.而界面下低速时,结论正好相反.
Abstract:In order to study the influence of the curvature of a curved interface on resolution, we deduce the approximate analytic formulas of Interface Fresnel Zone for reflected and transmission waves from a curved interface. Then we verify these formulas correspond to those from a planar interface which are already derived by others when the curvature in our formulas equals zero. At the same time, we develop a numerical method to compute the Fresnel volume for reflection and transmission under a curved interface based on grid traveltime computation, with the accuracy of grid traveltime computation and Fresnel volume acceptable. Finally, we compare these Fresnel volumes under different curved interfaces with a Fresnel volume under a planar interface whose curvature equals zero. Computational results show that a syncline-curved interface makes Fresnel volume wider near the interface than a planar interface and lowers the resolution, while an anticline-curved interface makes Fresnel volume narrower near the interface and enhances the resolution, with high speed under the interface. Moreover, the influence of a syncline-curved interface on resolution is obviously greater than that of an anticline-curved interface. The conclusion is opposite, with low speed under the interface.
-
Key words:
- Traveltime computation /
- Fresnel volume /
- Interface Fresnel Zone /
- Curvature /
- Resolution
-
-
Bai C Y, Li X W, Huang G J, et al. 2014. Simultaneous inversion for velocity and reflector geometry using multi-phase Fresnel volume Rays. Pure and Applied Geophysics, 171(7):1089-1105. doi: 10.1007/s00024-013-0686-6
Črvený V. 2001. Seismic Ray Theory. Cambridge:Cambridge University Press, 372-380.
Črvený V, Soares J E. 1992. Fresnel volume ray tracing. Geophysics, 57(7):902-915. doi: 10.1190/1.1443303
Favretto-Cristini N, Cristini P, Bazelaire E. 2009. What is a seismic reflector like?. Geophysics, 74(1):T13-T23. doi: 10.1190/1.3033216
Hubral P, Schleicher J, Tygel M, et al. 1993. Determination of Fresnel zones from traveltime measurements. Geophysics, 58(5):703-712. doi: 10.1190/1.1443454
Kravtsov Y, Orlov Y. 1990. GeometricalOptics of Inhomogeneous Media. Berlin:Springer-Verlag, 80-87.
Kvasnička M, Črvený V. 1996a. Analytical expressions for Fresnel volumes and interface Fresnel zones of seismic body waves. Part 1:Direct and unconverted reflected waves. Studia Geophysica et Geodaetica, 40(2):136-155. http://gji.oxfordjournals.org/external-ref?access_num=10.1007/BF02296354&link_type=DOI
Kvasnička M, Črvený V. 1996b. Analytical expressions for Fresnel volumes and interface Fresnel zones of seismic body waves. Part 2:Transmitted and converted waves. Head waves. Studia Geophysica et Geodaetica, 40(4):381-397. https://link.springer.com/article/10.1007/BF02300766
Li X W, Bai C Y, Yu Z C. 2014. Simultaneous inversion for velocity and reflector geometry based on the multi-phase Fresnel volume rays. Progress in Geophysics (in Chinese), 29(5):2019-2028, doi:10.6038/pg20140505.
Lindsey J P. 1989. The Fresnel zone and its interpretive significance. The Leading Edge, 8(10):33-39. doi: 10.1190/1.1439575
Rawlinson N, Sambridge M. 2004. Wave front evolution in strongly heterogeneous layered media using the fast marching method. Geophysical Journal International, 156(3):631-647. doi: 10.1111/gji.2004.156.issue-3
Rawlinson N, Sambridge M, Hauser J. 2010. Multipathing, reciprocal traveltime fields and raylets. Geophysical Journal International, 181(2):1077-1092. http://www.mendeley.com/research/multipathing-reciprocal-traveltime-fields-raylets/
Sethian J A. 2001. Evolution, implementation, and application of level set and fast marching methods for advancing fronts. Journal of Computational Physics, 169(2):503-555. doi: 10.1006/jcph.2000.6657
Sheriff R E, Geldart L P. 1982. Exploration Seismology. Cambridge:Cambridge University Press, 152-157.
Sun J G. 1996. The relationship between the first Fresnel zone and the normalized geometrical spreading factor. Geophysical Prospecting, 44(3):351-374. doi: 10.1111/gpr.1996.44.issue-3
Sun Z Q, Sun J G, Han F X. 2009a. Travel-time computation based on linear interpolation and narrow band technique. Oil Geophysical Prospecting (in Chinese), 44(4):436-441. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDQ200904012.htm
Sun Z Q, Sun J G, Han F X. 2009b. Traveltimes computation using linear interpolation and narrow band technique under complex topographical condition. Chinese Journal of Geophysics (in Chinese), 52(11):2846-2853. http://www.oalib.com/paper/1568887
Sun Z Q, Sun J G, Han F X. 2012. The comparison of three schemes for computing seismic wave traveltimes in complex topographical conditions. Chinese Journal of Geophysics (in Chinese), 55(2):560-568, doi:10.6038/j.issn.0001-5733.2012.02.018.
Sun Z Q, Sun J G, Yue Y B, et al. 2015. 3D traveltime computation using fast marching upwind bilinear interpolation method. Chinese Journal of Geophysics (in Chinese), 58(6):2011-2023, doi:10.6038/cjg20150616.
Tang X P, Bai C Y. 2009. Multiple ray tracing within 3-D layered media with the shortest path method. Chinese Journal of Geophysics (in Chinese), 52(10):2635-2643. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX200910027.htm
Ursin B, Favretto-Cristini N, Cristini P. 2014. Fresnel volume and interface Fresnel zone for reflected and transmitted waves from a curved interface in anisotropic media. Geophysics, 79(5):C123-C134. doi: 10.1190/geo2013-0396.1
Wang X S, Qian X F, Li B T. 2006. The first Fresnel zone radius and lateral resolving power of seismic data. Progress in Exploration Geophysics (in Chinese), 29(4):244-248. http://en.cnki.com.cn/Article_en/CJFDTOTAL-KTDQ200604004.htm
关治, 陈景良. 1990.数值计算方法.北京:清华大学出版社, 135-139.
李兴旺, 白超英, 于子超. 2014.菲涅耳体有限频射线多震相走时同时反演成像.地球物理学进展, 29(5):2019-2028, doi:10.6038/pg20140505.
孙章庆, 孙建国, 韩复兴. 2009a.基于线性插值和窄带技术的走时计算方法.石油地球物理勘探, 44(4):436-441.
孙章庆, 孙建国, 韩复兴. 2009b.复杂地表条件下基于线性插值和窄带技术的地震波走时计算.地球物理学报, 52(11):2846-2853. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract978.shtml
孙章庆, 孙建国, 韩复兴. 2012.针对复杂地形的三种地震波走时算法及对比.地球物理学报, 55(2):560-568, doi:10.6038/j.issn.0001-5733.2012.02.018. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract8431.shtml
孙章庆, 孙建国, 岳玉波等. 2015.基于快速推进迎风双线性插值法的三维地震波走时计算.地球物理学报, 58(6):2011-2023, doi:10.6038/cjg20150616. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract11603.shtml
唐小平, 白超英. 2009.最短路径算法下三维层状介质中多次波追踪.地球物理学报, 52(10):2635-2643. doi: 10.3969/j.issn.0001-5733.2009.10.024 http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract1216.shtml
王绪松, 钱雪峰, 李波涛. 2006.第一菲涅尔带半径与地震资料的横向分辨力.勘探地球物理进展, 29(4):244-248. http://mall.cnki.net/magazine/Article/KTDQ200604004.htm