基于电流密度连续性条件的直流电阻率各向异性问题自适应有限元模拟

任政勇, 邱乐稳, 汤井田, 周峰, 陈超健, 陈煌, 胡双贵. 2018. 基于电流密度连续性条件的直流电阻率各向异性问题自适应有限元模拟. 地球物理学报, 61(1): 331-343, doi: 10.6038/cjg2018K0698
引用本文: 任政勇, 邱乐稳, 汤井田, 周峰, 陈超健, 陈煌, 胡双贵. 2018. 基于电流密度连续性条件的直流电阻率各向异性问题自适应有限元模拟. 地球物理学报, 61(1): 331-343, doi: 10.6038/cjg2018K0698
REN ZhengYong, QIU LeWen, TANG JingTian, ZHOU Feng, CHEN ChaoJian, CHEN Huang, HU ShuangGui. 2018. 3D modeling of direct-current anisotropic resistivity using the adaptive finite-element method based on continuity of current density. Chinese Journal of Geophysics (in Chinese), 61(1): 331-343, doi: 10.6038/cjg2018K0698
Citation: REN ZhengYong, QIU LeWen, TANG JingTian, ZHOU Feng, CHEN ChaoJian, CHEN Huang, HU ShuangGui. 2018. 3D modeling of direct-current anisotropic resistivity using the adaptive finite-element method based on continuity of current density. Chinese Journal of Geophysics (in Chinese), 61(1): 331-343, doi: 10.6038/cjg2018K0698

基于电流密度连续性条件的直流电阻率各向异性问题自适应有限元模拟

  • 基金项目:

    青年973(2015CB060200),国家自然科学基金(41574120),国家自然科学基金(41474103),国家高技术研究发展计划(2014AA06A602),湖南省自然科学基金(2016JJ2139),中南大学创新驱动计划(2016CX005),中南大学研究生自主探索创新项目(2017zzts559)联合资助

详细信息
    作者简介:

    任政勇, 男, 1983年生, 副教授, 从事地球物理电磁法及重磁正反演研究.E-mail:renzhengyong@csu.edu.cn

    通讯作者: 汤井田, 男, 1965年生, 教授, 从事地球物理电磁法方法理论及正反演研究.E-mail:jttang@csu.edu.cn
  • 中图分类号: P631

3D modeling of direct-current anisotropic resistivity using the adaptive finite-element method based on continuity of current density

More Information
  • 直流电阻率法被广泛应用在工程和环境及水文地球物理、野外采矿、地热探测等领域.地下岩石常具有层理面和裂缝等具有方向依赖性的结构,岩石电导率常常呈现各向异性特征,因此研究复杂直流电阻率各向异性问题的高精度正演算法具有迫切的理论和学术需求.本文利用面向目标的自适应有限元算法和非结构化网格相结合的方式,解决了带地形任意复杂直流电阻率各向异性问题的高精度正演这一难题.有别于前人的研究成果,本文提出了一种特别的二次虚拟场算法实现带源的任意起伏地形问题模拟;另外,本文第一次基于电流密度连续性条件构建适合直流电阻率各向异性问题的后验误差估计算法,有效地驱动面向目标有限元网格自适应加密过程.最后,通过三组电阻率各向异性模型验证本文提出算法的正确性和适应性,测试结果表明:对于任意复杂直流电阻率各向异性问题,本文提出的算法具有精度高、适应性强等特点;另外,我们还发现电流密度连续性条件可用于设计直流电阻率问题的有效后验误差估计算法.

  • 加载中
  • 图 1 

    各向异性电导率主轴坐标系和测量坐标系框架

    Figure 1. 

    The measuring coordinate frame and principal axis frame of anisotropic conductivity

    图 2 

    带地形三维各向异性直流电阻率模型图

    Figure 2. 

    3D anisotropic DC resistivity model with topography

    图 3 

    网格自适应修正框架流程图

    Figure 3. 

    The flow chart of adaptive mesh refinement procedure

    图 4 

    两层各向异性模型示意图

    Figure 4. 

    Illustration of two-layer anisotropic modle

    图 5 

    两层各向异性模型上面向目标自适应加密算法结果与解析解对比

    Figure 5. 

    Comparison of the apparent resistivity computed by goal-oriented adaptive algorithm for two-layer anisotropic model against analytical solution

    图 6 

    山脉峡谷模型示意图

    Figure 6. 

    Illustration of mountain-valley model

    图 7 

    山脉峡谷模型上不同迭代网格沿测线上的视电阻率收敛情况及相对误差曲线

    Figure 7. 

    Convergence of apparent resistivity and relative error curves along survey profile computed on different mesh levels for mountain-valley model

    图 8 

    山脉峡谷模型自适应加密网格(第一次网格(a), 第五次网格(b))上单元相对误差分布图,第五次网格影响函数W的分布图(c)

    Figure 8. 

    Adaptive refining mesh of relative elemental error for mountain-valley model(the first mesh (a), the fifth mesh (b)), the distribution of influence function W based on the fifth mesh

    图 9 

    张量视电阻率测量

    Figure 9. 

    Measurement of tensor apparent resistivity

    图 10 

    双偶极子源测量装置(Bibby,1986)

    Figure 10. 

    The measurement of double bipole source

    图 11 

    A和B为各向同性,C和D为各向异性情况下的张量视电阻率的P2旋转不变量等值线图

    Figure 11. 

    P2 rotation variable contour lines of tensor apparent resistivity with A and B of isotropy, C and D of anisotropy

    图 12 

    A, B, C, D均为各向异性情况下的张量视电阻率的P2旋转不变量等值线图

    Figure 12. 

    P2 rotation variable contour lines of tensor apparent resistivity with A, B, C and D of anisotropy

    表 1 

    山脉峡谷模型三次网格参数对比

    Table 1. 

    Mesh parameters of three mesh levels for mountain-valley model

    网格水平 节点数 单元数 平均误差
    网格(1st) 23882 126106 8.72
    网格(3rd) 94865 536472 3.59
    网格(5th) 120032 682638 0.82
    下载: 导出CSV
  •  

    Ainsworth M, Oden J T. 1993. A unified approach to a posteriori error estimation using element residual methods. Numerische Mathematik, 65(1):23-50. doi: 10.1007/BF01385738

     

    Ainsworth M, Oden J T. 1997. A posteriori error estimation in finite element analysis. Computer Methods in Applied Mechanics and Engineering, 142(1-2):1-88. doi: 10.1016/S0045-7825(96)01107-3

     

    Asten M W. 1974. The influence of electrical anisotropy on mise a la masse surveys. Geophysical Prospecting, 22(2):238-245. doi: 10.1111/gpr.1974.22.issue-2

     

    Attias E, Weitemeyer K, Minshull T A, et al. 2016. Controlled-source electromagnetic and seismic delineation of subseafloor fluid flow structures in a gas hydrate province, offshore Norway. Geophysical Journal International, 206(2):1093-1110. doi: 10.1093/gji/ggw188

     

    Babuška I, Rheinboldt W C. 1979. Adaptive approaches and reliability estimations in finite element analysis. Computer Methods in Applied Mechanics and Engineering, 17-18:519-540. doi: 10.1016/0045-7825(79)90042-2

     

    Bibby H M. 1978. Direct current resistivity modeling for axially symmetric bodies using the finite element method. Geophysics, 43(3):550-562. doi: 10.1190/1.1440836

     

    Bibby H M. 1986. Analysis of multiple-source bipole-quadripole resistivity surveys using the apparent resistivity tensor. Geophysics, 51(4):972-983. doi: 10.1190/1.1442155

     

    Bibby H M, Hohmann G W. 1993. Three-dimensional interpretation of multiple-source bipole-dipole resistivity data using the apparent resistivity tensor. Geophysical prospecting, 41(6):697-723. doi: 10.1111/gpr.1993.41.issue-6

     

    Blome M, Maurer H R, Schmidt K. 2009. Advances in three-dimensional geoelectric forward solver techniques. Geophysical Journal International, 176(3):740-752. doi: 10.1111/gji.2009.176.issue-3

     

    Brenner S, Scott R. 2007. The Mathematical Theory of Finite Element Methods. Dordrecht:Springer.

     

    Chou T K, Chouteau M, Dubé J S. 2016. Intelligent meshing technique for 2D resistivity inverse problems. Geophysics, 81(4):IM45-IM56. doi: 10.1190/geo2015-0177.1

     

    Dai R H, Zhang F C, Liu H Q. 2016. Seismic inversion based on proximal objective function optimization algorithm. Geophysics, 81(5):R237-R246. doi: 10.1190/geo2014-0590.1

     

    Dey A, Morrison H F. 1979. Resistivity modeling for arbitrarily shaped three-dimensional structures. Geophysics, 44(4):753-780. doi: 10.1190/1.1440975

     

    Franke A, Börner R U, Spitzer K. 2007. Adaptive unstructured grid finite element simulation of two-dimensional magnetotelluric fields for arbitrary surface and seafloor topography. Geophysical Journal International, 171(1):71-86. doi: 10.1111/gji.2007.171.issue-1

     

    Greenhalgh M S. 2009. DC resistivity modelling and sensitivity analysis in anisotropic media[Ph. D. thesis]. Adelaide:The University of Adelaide.

     

    Greenhalgh S, Zhou B, Greenhalgh M, et al. 2009. Explicit expression s for the Fréchet derivatives in 3D anisotropic resistivity inversion. Geophysics, 74(3):F31-F43. doi: 10.1190/1.3111114

     

    Habberjam G M. 1975. Apparent resistivity, anisotropy and strike measurements. Geophysical Prospecting, 23(2):211-247. doi: 10.1111/gpr.1975.23.issue-2

     

    Hou J S, Mallan R K, Torres-Verdín C. 2006. Finite-difference simulation of borehole EM measurements in 3D anisotropic media using coupled scalar-vector potentials. Geophysics, 71(5):G225-G233. doi: 10.1190/1.2245467

     

    Hu Q E, Chen X Z, Zhou K D. 1997. A new posterior error estimate and adaptivity approach for electromagnetic field finite element computations. Proceedings of the CSEE, 17(2):78-83. https://www.researchgate.net/publication/3098555_Reliability_Assessment_of_an_%27a_posteriori%27_Error_Estimate_for_Adaptive_Computation_of_Electromagnetic_Field_Problems

     

    Jin J M. 2014. The Finite Element Method in Electromagnetics. New York:John Wiley & Sons.

     

    Key K, Weiss C. 2006. Adaptive finite-element modeling using unstructured grids:The 2D magnetotelluric example. Geophysics, 71(6):G291-G299. doi: 10.1190/1.2348091

     

    Li J M. 2005. Geoelectric Field and Electrical Exploration. Beijing:Geological Publishing House.

     

    Li P, Uren N F. 1997. Analytical solution for the point source potential in an anisotropic 3-D half-space I:two-horizontal-layer case. Mathematical and Computer Modelling, 26(5):9-27. doi: 10.1016/S0895-7177(97)00155-6

     

    Li P, Uren N F. 1999. The modelling of direct current electric potential in an arbitrarily anisotropic half-space containing a conductive 3-D body. Journal of Applied Geophysics, 38(1):57-76. https://www.sciencedirect.com/science/article/pii/S0926985197000128

     

    Li P, Stagnitti F. 2004. Direct current electric potential in an anisotropic half-space with vertical contact containing a conductive 3D body. Mathematical Problems in Engineering, 2004:63-77. doi: 10.1155/S1024123X04201016

     

    Li Y G, Spitzer K. 2002. Three-dimensional DC resistivity forward modelling using finite elements in comparison with finite-difference solutions. Geophysical Journal International, 151(3):924-934. doi: 10.1046/j.1365-246X.2002.01819.x

     

    Li Y G, Spitzer K. 2005. Finite element resistivity modelling for three-dimensional structures with arbitrary anisotropy. Physics of the Earth and Planetary Interiors, 150(1-3):15-27. doi: 10.1016/j.pepi.2004.08.014

     

    Li Y G, Key K. 2007. 2D marine controlled-source electromagnetic modeling:Part 1-An adaptive finite-element algorithm. Geophysics, 72(2):WA51-WA62. doi: 10.1190/1.2432262

     

    Li Y G, Pek J. 2008. Adaptive finite element modelling of two-dimensional magnetotelluric fields in general anisotropic media. Geophysical Journal International, 175(3):942-954. doi: 10.1111/gji.2008.175.issue-3

     

    Linde N, Pedersen L B. 2004. Evidence of electrical anisotropy in limestone formations using the RMT technique. Geophysics, 69(4):909-916. doi: 10.1190/1.1778234

     

    Lowry T, Allen M, Shive P N. 1989. Singularity removal:A refinement of resistivity modeling techniques. Geophysics, 54(6):766-774. doi: 10.1190/1.1442704

     

    Maillet R. 1947. The fundamental equations of electrical prospecting. Geophysics, 12(4):529-556. doi: 10.1190/1.1437342

     

    Oden J T, Prudhomme S. 2001. Goal-oriented error estimation and adaptivity for the finite element method. Computers & Mathematics with Applications, 41(5-6):735-756. https://www.sciencedirect.com/science/article/pii/S0898122100003175

     

    Pain C C, Herwanger J V, Saunders J H, et al. 2003. Anisotropic resistivity inversion. Inverse Problems, 19(5):1081-1111. doi: 10.1088/0266-5611/19/5/306

     

    Penz S, Chauris H, Donno D, et al. 2013. Resistivity modelling with topography. Geophysical Journal International, 194(3):1486-1497. doi: 10.1093/gji/ggt169

     

    Rücker C, Günther T, Spitzer K. 2006. Three-dimensional modelling and inversion of dc resistivity data incorporating topography-I. Modelling. Geophysical Journal International, 166(2):495-505. doi: 10.1111/gji.2006.166.issue-2

     

    Ren Z Y, Tang J T. 2009. Finite element modeling of 3-D DC resistivity using locally refined unstructured meshes. Chinese Journal of Geophysics (in Chinese), 52(10):2627-2634. https://www.researchgate.net/publication/289916823_Finite_element_modeling_of_3-D_DC_resistivity_using_locally_refined_unstructured_meshes

     

    Ren Z Y, Tang J T. 2010. 3D direct current resistivity modeling with unstructured mesh by adaptive finite-element method. Geophysics, 75(1):H7-H17. doi: 10.1190/1.3298690

     

    Ren Z Y, Kalscheuer T, Greenhalgh S, et al. 2013. A goal-oriented adaptive finite-element approach for plane wave 3-D electromagnetic modelling. Geophysical Journal International, 194(2):700-718. doi: 10.1093/gji/ggt154

     

    Ren Z Y, Kalscheuer T, Greenhalgh S, et al. 2014. A hybrid boundary element-finite element approach to modeling plane wave 3D electromagnetic induction responses in the Earth. Journal of Computational Physics, 258:705-717. doi: 10.1016/j.jcp.2013.11.004

     

    Ren Z Y, Tang J T. 2014. A goal-oriented adaptive finite-element approach for multi-electrode resistivity system. Geophysical Journal International, 199(1):136-145. doi: 10.1093/gji/ggu245

     

    Ren Z Y, Chen C J, Tang J T, et al. 2017d. A new integral equation approach for 3D magnetotelluric modeling. Chinese Journal of Geophysics (in Chinese), 60(11):4506-4515, doi:10.6038/cjg20171134.

     

    Ren Z Y, Qiu L W, Tang J T, et al. 2018a. 3-D direct current resistivity anisotropic modelling by goal-oriented adaptive finite element methods. Geophysical Journal International, 212(1):76-87. doi: 10.1093/gji/ggx256

     

    Ren Z Y, Chen C J, Pan K J, et al. 2017a. Gravity Anomalies of Arbitrary 3D Polyhedral Bodies with Horizontal and Vertical Mass Contrasts. Surveys in Geophysics, 38(2):479-502. doi: 10.1007/s10712-016-9395-x

     

    Ren Z Y, Tang J T, Kalscheuer T, et al. 2017b. Fast 3D large-scale gravity and magnetic modeling using unstructured grids and an adaptive multi-level fast multipole method. Journal of Geophysical Research:Solid Earth, 122(1):79-109. doi: 10.1002/2016JB012987

     

    Ren Z Y, Chen C J, Tang J T, et al. 2017c. Closed-form formula for full magnetic gradient tensor of a homogeneous polyhedral body:a tetrahedral grid example. Geophysics, 82(6):WB21-WB28. doi: 10.1190/geo2016-0470.1

     

    Ren Z Y, Zhong Y Y, Chen C J, et al. 2018b. Gravity anomalies of arbitrary 3D polyhedral bodies with horizontal and vertical mass contrasts up to cubic order. Geophysics, 83(1):G1-G13. doi: 10.1190/geo2017-0219.1

     

    Schenk O, Gärtner K. 2004. Solving unsymmetric sparse systems of linear equations with PARDISO. Future Generation Computer Systems, 20(3):475-487. doi: 10.1016/j.future.2003.07.011

     

    Si H. 2015. TetGen, a delaunay-based quality tetrahedral mesh generator. Acm Transactions on Mathematical Software, 41(2):1-36. https://people.sc.fsu.edu/~jburkardt/examples/tetgen/tetgen.html

     

    Stratton J A. 2007. Electromagnetic Theory. New York:John Wiley & Sons.

     

    Wait J R. 1990. Current flow into a three-dimensionally anisotropic conductor. Radio Science, 25(5):689-694. doi: 10.1029/RS025i005p00689

     

    Wang F Y. 2009. 2.5D DC resistivity modeling by the adaptive finite-element method with unstructured triangulation[Master's thesis] (in Chinese). Changsha:Central South University.

     

    Wang J H, Yang L, Shen W P. 2000. Advances of posteriori error estimation for FEM. Advances in Mechanics (in Chinese), 30(2):175-190.

     

    Wang T, Fang S. 2001. 3-D electromagnetic anisotropy modeling using finite differences. Geophysics, 66(5):1386-1398. doi: 10.1190/1.1486779

     

    Wang W, Wu X P, Spitzer K. 2013. Three-dimensional DC anisotropic resistivity modelling using finite elements on unstructured grids. Geophysical Journal International, 193(2):734-746. doi: 10.1093/gji/ggs124

     

    Xu S Z, Liu B, Ruan B Y. 1994. The finite element method for solving anomalous potential for resistivity surveys. Chinese Journal of Geophysics (in Chinese), 37(2):511-515.

     

    Yan B. 2013. 2.5D DC resistivity numerical modeling by adaptive finite-element method[Master's thesis] (in Chinese). Qingdao:Chinese Marine University.

     

    Yin C C, Weidelt P. 1999. Geoelectrical fields in a layered earth with arbitrary anisotropy. Geophysics, 64(2):426-434. doi: 10.1190/1.1444547

     

    Yin C C. 2000. Geoelectrical inversion for a one-dimensional anisotropic model and inherent non-uniqueness. Geophysical Journal International, 140(1):11-23. doi: 10.1046/j.1365-246x.2000.00974.x

     

    Yin C C, Maurer H M. 2001. Electromagnetic induction in a layered earth with arbitrary anisotropy. Geophysics, 66(5):1405-1416. doi: 10.1190/1.1487086

     

    Yin C C, Zhang B, Liu Y H, et al. 2016. A goal-oriented adaptive finite-element method for 3D scattered airborne electromagnetic method modeling. Geophysics, 81(5):E337-E346. doi: 10.1190/geo2015-0580.1

     

    Zhou B, Greenhalgh M, Greenhalgh S A. 2009. 2.5-D/3-D resistivity modelling in anisotropic media using Gaussian quadrature grids. Geophysical Journal International, 176(1):63-80. http://www3.appliedbiosystems.com/cms/groups/mcb_support/documents/generaldocuments/cms_040980.pdf

     

    Zhu J, Taylor Z, Zienkiewicz O. 2005. The Finite Element Method:Its Basis and Fundamentals. Burlington, VT:Butterworth-Heinemann.

     

    Zienkiewicz O C, Taylor R L. 2000. The Finite Element Method:Solid Mechanics. Oxford:Butterworth-Heinemann.

     

    Zienkiewicz O C. 2006. The background of error estimation and adaptivity in finite element computations. Computer Methods in Applied Mechanics and Engineering, 195(4-6):207-213. doi: 10.1016/j.cma.2004.07.053

     

    胡恩球, 陈贤珍, 周克定. 1997.电磁场有限元计算后验误差估计与自适应新方法.中国电机工程学报, 17(2):78-83. http://www.doc88.com/p-6186671418102.html

     

    李金铭. 2005.地电场与电法勘探.北京:地质出版社.

     

    任政勇, 汤井田. 2009.基于局部加密非结构化网格的三维电阻率法有限元数值模拟.地球物理学报, 52(10):2627-2634. doi: 10.3969/j.issn.0001-5733.2009.10.023 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200910026.htm

     

    任政勇, 陈超健, 汤井田, 等. 2017d.一种新的三维大地电磁积分方程正演方法.地球物理学报, 60(11):4506-4515, doi:10.6038/cjg20171134.

     

    王飞燕. 2009. 基于非结构化网格的2. 5-D直流电阻率法自适应有限元数值模拟[硕士论文]. 长沙: 中南大学.

     

    王建华, 杨磊, 沈为平. 2000.有限元后验误差估计方法的研究进展.力学进展, 30(2):175-190. doi: 10.6052/1000-0992-2000-2-J1998-015

     

    徐世浙, 刘斌, 阮百尧. 1994.电阻率法中求解异常电位的有限单元法.地球物理学报, 37(2):511-515. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201105038.htm

     

    严波. 2013. 2. 5维直流电阻率自适应有限元数值模拟[硕士论文]. 青岛: 中国海洋大学.

  • 加载中

(12)

(1)

计量
  • 文章访问数:  2039
  • PDF下载数:  836
  • 施引文献:  0
出版历程
收稿日期:  2016-12-08
修回日期:  2017-11-15
上线日期:  2018-01-05

目录