地震槽波的数学-物理模拟初探

皮娇龙, 滕吉文, 刘有山. 2018. 地震槽波的数学-物理模拟初探. 地球物理学报, 61(6): 2481-2493, doi: 10.6038/cjg2018K0529
引用本文: 皮娇龙, 滕吉文, 刘有山. 2018. 地震槽波的数学-物理模拟初探. 地球物理学报, 61(6): 2481-2493, doi: 10.6038/cjg2018K0529
PI JiaoLong, TENG JiWen, LIU YouShan. 2018. Preliminary study on the numerical-physical simulation of seismic channel waves. Chinese Journal of Geophysics (in Chinese), 61(6): 2481-2493, doi: 10.6038/cjg2018K0529
Citation: PI JiaoLong, TENG JiWen, LIU YouShan. 2018. Preliminary study on the numerical-physical simulation of seismic channel waves. Chinese Journal of Geophysics (in Chinese), 61(6): 2481-2493, doi: 10.6038/cjg2018K0529

地震槽波的数学-物理模拟初探

  • 基金项目:

    国家自然科学基金重点项目(41130419)和中国地震局地球物理研究所基本科研业务费专项(DQJB15B15)联合资助

详细信息
    作者简介:

    皮娇龙, 女, 1988年生, 助理研究员, 主要从事地球动力学数值模拟研究.E-mail:pijl@cea-igp.ac.cn

    通讯作者: 滕吉文, 男, 1934年生, 研究员, 中国科学院院士, 主要从事地球物理学和地球动力学研究.E-mail:jwteng@mail.iggcas.ac.cn
  • 中图分类号: P315

Preliminary study on the numerical-physical simulation of seismic channel waves

More Information
  • 针对地震槽波在低速层的传播特性,开展了煤层内地震槽波勘探的数值模拟和物理模拟研究的初探工作.在数值模拟研究方面,采用交错网格有限差分法对煤层中的地震槽波进行三分量全波场模拟.基于波场快照和人工合成地震记录研究了不同模型中的波场特征和各种波型的传播规律.在物理模拟方面,通过选用不同配比的环氧树脂和硅橡胶类材料构建地震槽波物理模型,利用透射法和反射法观测系统获得了清晰的地震槽波记录以研究槽波的地震学特征.研究表明,在煤层内槽波的地震波场中,Love型槽波的能量小于Rayleigh型槽波的SV分量,大于Rayleigh型槽波的SH分量.相对于Love型槽波和Rayleigh型槽波的SH分量,Rayleigh型槽波的SV分量在围岩中的泄露能量较强.在煤层界面附近的围岩中,地震波仍以槽波形式传播,随着距离的增加能量逐渐衰减.随着煤层变薄,煤层槽波主频向高频方向移动,频散现象增强,传播速度增大.

  • 加载中
  • 图 1 

    三维交错网格示意图

    Figure 1. 

    Diagram of the three-dimensional staggered grid

    图 2 

    简单三层结构煤层模型的示意图

    Figure 2. 

    Geological schematic diagram of the three-layer coal seam model

    图 3 

    Vx分量在y=50 m平面上不同时刻的波场快照

    Figure 3. 

    Snapshots of the Vx-component at different moments in the y=50 m plane

    图 4 

    Vz分量在y=50 m平面上不同时刻的波场快照

    Figure 4. 

    Snapshots of the Vz-component at different moments in the y=50 m plane

    图 5 

    煤层中沿测线(z=25 m,y=50 m,沿x轴的检波列)接收的Vx分量(a)和Vz分量(b)地震合成记录

    Figure 5. 

    Synthetic seismogram of the Vx-component (a) and Vz-component (b) recorded in the coal seam along the survey line

    图 6 

    检波点20 m处的Vx分量的波形图(a)和频谱图(b)

    Figure 6. 

    Oscillogram (a) and spectrogram (b) of the Vx-component in the geophone position 20 m

    图 7 

    检波点60 m处的Vx分量的波形图(a)和频谱图(b)

    Figure 7. 

    Oscillogram (a) and spectrogram (b) of the Vx-component in the geophone position 60 m

    图 8 

    检波点110 m处的Vx分量的波形图(a)和频谱图(b)

    Figure 8. 

    Oscillogram (a) and spectrogram (b) of the Vx-component in the geophone position 110 m

    图 9 

    Rayleigh型槽波Vx分量(a)和Vz分量(b)的频率-相速度图

    Figure 9. 

    (a) Frequency-phase velocity diagram of Vx-component of Rayleigh channel wave; (b) Frequency-phase velocity diagram of Vz-component of Rayleigh channel wave

    图 10 

    煤层厚度为5 m时,在y=50 m平面和z=25 m平面交线处的频率-相速度图

    Figure 10. 

    Frequency-phase velocity diagram in the interface of plane y=50 m and plane z=25 m in the 5 meters thickeness of coal seam

    图 11 

    z=25 m平面与y=50 m平面交线上的Vy分量地震记录

    Figure 11. 

    Seismologic record of the Vy-component in the interface of plane z=25 m and plane y=50 m

    图 12 

    Love型槽波(Vy分量)的频率-相速度图

    Figure 12. 

    Frequency- phase velocity diagram of Love channel wave (Vy-component)

    图 13 

    煤层厚度为5 m时Love型槽波(Vy分量)的频率-相速度图

    Figure 13. 

    Frequency-phase velocity diagram of Love channel wave (Vy-component) in the 5-meter thickness of the coal seam

    图 14 

    非对称煤层模型示意图

    Figure 14. 

    Schematic diagram of asymmetric coal seam model

    图 15 

    Vx分量在y=71 m平面和z=48 m平面的不同时刻波场快照图(白色线段为煤层与顶、底板分界面)

    Figure 15. 

    Snapshots of the Vx-component at different moments in the interface of the plane y=71 m and plane z=48 m (two white lines are the interfaces of the coal roof and the seam floor)

    图 16 

    Vz分量在y=71 m和z=48 m不同时刻的平面的不同时刻波场快照图(白色线段为煤层与顶、底板分界面)

    Figure 16. 

    Snapshots of the Vz-component at different moments in the interface of the plane y=71 m and plane z=48 m (two white lines are the interfaces of the coal roof and the seam floor)

    图 17 

    y=71 m平面和z=48 m平面交线处的VxVzVy分量的地震记录图

    Figure 17. 

    Seismograms of the Vx-component, Vy-component and Vz-component in the interface of the plane y=71 and the plane z=48

    图 18 

    物理模型照片

    Figure 18. 

    Photograph of the physical model

    图 19 

    透射法观测系统

    Figure 19. 

    Observation system of the transmission method

    图 20 

    反射观测系统简图

    Figure 20. 

    Schematic diagram of the observation system of the reflection method

    图 21 

    物理模型反射观测系统得到的地震炮集记录

    Figure 21. 

    Shot gather recorded in the reflection observation system

    图 22 

    第25炮的炮集记录

    Figure 22. 

    Shot gather record of the 25-shot

    表 1 

    弹性波场分量和弹性参数的空间位置(牟永光和裴正林,2005)

    Table 1. 

    The spatial position of the elastic wave field components and the elastic parameters (Mou and Pei, 2005)

    网格点 1 2 3 4 5 6 7
    弹性波场分量和弹性参数 σxxσyyσzz λ+2μ Vxρ-1 Vyρ-1 Vzρ-1 σxyμ σxzμ σyzμ
    下载: 导出CSV

    表 2 

    模型中各岩层介质参数

    Table 2. 

    The stratum medium parameters of the model

    介质 厚度/m 纵波速度
    /(m·s-1)
    横波速度
    /(m·s-1)
    密度
    /(kg·m-3)
    上部围岩 20 3000 1740 2500
    煤层 10 1800 1070 1300
    下部围岩 20 3000 1740 2500
    下载: 导出CSV

    表 3 

    非模型中各岩层介质参数

    Table 3. 

    Medium parameters of the stratum in the asymmetric coal seam model

    介质 纵波速度
    /(m·s-1)
    横波速度
    /(m·s-1)
    密度
    /(kg·m-3)
    上部围岩 2811 1745 1600
    煤层 1411 723 1110
    下部围岩 2811 1745 1600
    下载: 导出CSV

    表 4 

    物理模型中各岩层介质参数

    Table 4. 

    Medium parameters of the stratum in the physical model

    介质 纵波速度
    /(m·s-1)
    横波速度
    /(m·s-1)
    密度
    /(kg·m-3)
    上部围岩 2811 1411 1600
    煤层 1745 723 1110
    下部围岩 2811 1411 1600
    下载: 导出CSV
  •  

    Cheng J Y, Ji G Z, Zhu P M. 2012. Love channel-waves dispersion characteristic analysis of typical coal models. Journal of China Coal Society (in Chinese), 37(1):67-72. http://en.cnki.com.cn/Article_en/CJFDTotal-MTXB201201013.htm

     

    Cooper J K, Lawton D C, Margrave G F. 2010. The wedge model revisited:A physical modeling experiment. Geophysics, 75(2):T15-T21. doi: 10.1190/1.3309641

     

    Di B R, Xu X C, Wei J X. 2008. A seismic modeling analysis of wide and narrow 3D observation systems for channel sand bodies. Applied Geophysics, 5(3):294-300.

     

    Dong S H, Ma Y L, Zhou M. 2004. Forward modeling of relationship between coal seam thickness and seismic attributes of amplitude and frequency. Journal of China University of Mining & Technology (in Chinese), 33(1):29-32. http://en.cnki.com.cn/Article_en/CJFDTotal-ZGKD200401006.htm

     

    Dresen L, Rüter H. 1994. Seismic Coal Exploration Part B:In-Seam Seismic. New York:Pergamon.

     

    Ebrom D A, Tatham R H, Sekharan K K, et al. 1990. Hyperbolic traveltime analysis of first arrivals in an azimuthally anisotropic medium:a physical modeling study. Geophysics, 50(2):185-191. http://www.mendeley.com/catalog/hyperbolic-traveltime-analysis-first-arrivals-azimuthally-anisotropic-medium-physical-model-study/

     

    Festa G, Nielsen S. 2003. PML absorbing boundaries. Bulletin of the Seismological Society of America, 93(2):891-903. doi: 10.1785/0120020098

     

    French W S. 1974. Two-dimensional and three-dimensional migration of model-experiment reflection profiles. Geophysics, 39(3):265-277. doi: 10.1190/1.1440426

     

    Grechka V, Pech A, Tsvankin I, et al. 2001. Velocity analysis for tilted transversely isotropic media:A physical modeling example. Geophysics, 66(3):904-910. doi: 10.1190/1.1444980

     

    Ji G Z, Cheng J Y, Zhu P M. 2011. Numerical simulation of seam Love type channel-wave and analysis on dispersion features. Coal Science and Technology (in Chinese), 39(6):106-109. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract14560.shtml

     

    Ji G Z, Cheng J Y, Zhu P M, et al. 2012. 3-D numerical simulation and dispersion analysis of in-seam wave in underground coal mine. Chinese Journal of Geophysics (in Chinese), 55(2):645-654, doi:10.6038/j.issn.0001-5733.2012.02.028.

     

    Mou Y G. 2003. Seismic Physical Modeling for 3-D Complex Media (in Chinese). Beijing:Petroleum Industry Press.

     

    Mou Y G, Pei Z L. 2005. Seismic Numerical Modeling for 3-D Complex Media (in Chinese). Beijing:Petroleum Industry Press.

     

    Pi J L, Teng J W, Yang H, et al. 2013. Research advance in analogue-numerical simulation on the dynamic characteristics of In-seam seismic and its application. Progress in Geophysics (in Chinese), 28(2):958-974, doi:10.6038/pg20130250.

     

    Pi J L. 2015. Attributes of the crust-mantle boundary (Moho) and material migration in Tibetan Plateau and numerical-physical simulation on channel waves [Ph. D. thesis] (in Chinese). Beijing: Chinese Academy of Sciences.

     

    Stewart R R, Dyaur N, Omoboya B, et al. 2013. Physical modeling of anisotropic domains:Ultrasonic imaging of laser-etched fractures in glass. Geophysics, 78(1):D11-D19. doi: 10.1190/geo2012-0075.1

     

    Wandler A, Evans B, Link C. 2007. AVO as a fluid indicator:a physical modeling study. Geophysics, 72(1):C9-C17. doi: 10.1190/1.2392817

     

    Wei J X, Di B R. 2008. Model study on influence of fracture apertures on seismic wave characteristics. Science in China (Series D:Earth Science), 38(S1):211-218.

     

    Wei J X, Mou Y G, Di B R. 2002. Study of 3-D seismic physical model. Oil Geophysical Prospecting (in Chinese), 37(6):556-561. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYDQ200206001.htm

     

    Wiley R W, McKnight R S, Sekharan K K. 1996. Salt canopy 3-D physical modeling project. The Leading Edge, 15(11):1249-1251. doi: 10.1190/1.1437235

     

    Yang S T, Cheng J L. 2012. The method of small structure prediction ahead with Rayleigh channel wave in coal roadway and seismic wave field numerical simulation. Chinese Journal of Geophysics (in Chinese), 55(2):655-662, doi:10.6038/j.issn.0001-5733.2012.02.029.

     

    Yang W Q. 2001. Modeling research of channel wave seismic exploration. Geology and Prospecting (in Chinese), 37(3):58-60. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT200103015.htm

     

    Yang X H, Li D C, Yu P F. 2010. Analysis of Rayleigh channel wave dispersion in coal seam. Geophysical and Geochemical Exploration (in Chinese), 34(6):750-752. http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTYH201006014.htm

     

    Yang Z, Feng T, Wang S G. 2010. Dispersion characteristics and wave shape mode of SH channel wave in a 0.9m-thin coal seam. Chinese Journal of Geophysics (in Chinese), 53(2):442-449, doi:10.3969/j.issn.0001-5733.2010.02.023.

     

    Zhu Y P, Tsvankin I, Dewangan P, et al. 2007. Physical modeling and analysis of P-wave attenuation anisotropy in transversely isotropic media. Geophysics, 72(1):D1-D7. http://www.mendeley.com/catalog/physical-modeling-analysis-pwave-attenuation-anisotropy-transversely-isotropic-media/

     

    程建远, 姬广忠, 朱培民. 2012.典型含煤模型Love型槽波的频散特征分析.煤炭学报, 37(1):67-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtxb201201012

     

    董守华, 马彦良, 周明. 2004.煤层厚度与振幅、频率地震属性的正演模拟.中国矿业大学学报, 33(1):29-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb200401007

     

    姬广忠, 程建远, 朱培民. 2011.煤层Love型槽波数值模拟及其频散特征分析.煤炭科学技术, 39(6):106-109. http://www.cnki.com.cn/Article/CJFDTotal-MTKJ201106031.htm

     

    姬广忠, 程建远, 朱培民等. 2012.煤矿井下槽波三维数值模拟及频散分析.地球物理学报, 55(2):645-654, doi:10.6038/j.issn.0001-5733.2012.02.028. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract8441.shtml

     

    牟永光. 2003.三维复杂介质地震物理模拟.北京:石油工业出版社.

     

    牟永光, 裴正林. 2005.三维复杂介质地震数值模拟.北京:石油工业出版社.

     

    皮娇龙, 滕吉文, 杨辉等. 2013.地震槽波动力学特征物理-数学模拟及应用进展.地球物理学进展, 28(2):958-974, doi:10.6038/pg20130250.

     

    皮娇龙. 2015. 青藏高原壳-幔边界(Moho)属性与物质运移和地震槽波数学-物理模拟. 北京: 中国科学院大学.

     

    魏建新, 狄帮让.2008.裂隙张开度对地震波特性影响的模型研究.中国科学, 38(增):211-218. http://www.oalib.com/paper/4150489

     

    魏建新, 牟永光, 狄帮让. 2002.三维地震物理模型的研究.石油地球物理勘探, 37(6):556-561. http://www.cqvip.com/QK/93077X/200206/7276538.html

     

    杨思通, 程久龙. 2012.煤巷小构造Rayleigh型槽波超前探测数值模拟.地球物理学报, 55(2):655-662, doi:10.6038/j.issn.0001-5733.2012.02.029. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract8442.shtml

     

    杨文强. 2001.槽波地震勘探的数学模型研究.地质与勘探, 37(3):58-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt200103015

     

    杨小慧, 李德春, 于鹏飞. 2010.煤层中瑞利型槽波的频散特性.物探与化探, 34(6):750-752. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_wtyht201006012

     

    杨真, 冯涛, Wang S G. 2010. 0.9 m薄煤层SH型槽波频散特征及波形模式.地球物理学报, 53(2):442-449, doi:10.3969/j.issn.0001-5733.2010.02.023. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract1282.shtml

  • 加载中

(22)

(4)

计量
  • 文章访问数:  458
  • PDF下载数:  398
  • 施引文献:  0
出版历程
收稿日期:  2016-09-14
修回日期:  2017-07-05
上线日期:  2018-06-05

目录