基于波场分离的弹性波逆时偏移

王维红, 张伟, 石颖, 柯璇. 2017. 基于波场分离的弹性波逆时偏移. 地球物理学报, 60(7): 2813-2824, doi: 10.6038/cjg20170726
引用本文: 王维红, 张伟, 石颖, 柯璇. 2017. 基于波场分离的弹性波逆时偏移. 地球物理学报, 60(7): 2813-2824, doi: 10.6038/cjg20170726
WANG Wei-Hong, ZHANG Wei, SHI Ying, KE Xuan. 2017. Elastic reverse time migration based on wavefield separation. Chinese Journal of Geophysics (in Chinese), 60(7): 2813-2824, doi: 10.6038/cjg20170726
Citation: WANG Wei-Hong, ZHANG Wei, SHI Ying, KE Xuan. 2017. Elastic reverse time migration based on wavefield separation. Chinese Journal of Geophysics (in Chinese), 60(7): 2813-2824, doi: 10.6038/cjg20170726

基于波场分离的弹性波逆时偏移

  • 基金项目:

    国家自然科学基金项目(41574117,41474118)、黑龙江省杰出青年科学基金项目(JC2016006)、以及大连理工大学海岸和近海工程国家重点实验室开放基金(LP1509)联合资助

详细信息
    作者简介:

    王维红, 男, 1975年生, 博士, 教授, 主要从事地震资料数字处理方面的研究.E-mail:wwhsy@sina.com

    通讯作者: 石颖, 女, 1976年生, 教授, 博士生导师, 主要从事地震资料处理方面的研究.E-mail:shiyingdqpi@163.com
  • 中图分类号: P631

Elastic reverse time migration based on wavefield separation

More Information
  • 尽管叠前逆时偏移成像精度高,但仅针对单一纵波的成像也可能形成地下介质成像盲区,由于基于弹性波方程的逆时偏移成像可形成多波模式的成像数据,因此弹性波逆时偏移成像可提供更为丰富的地下构造信息.本文依据各向同性介质的一阶速度-应力方程组构建震源和检波点矢量波场,再利用Helmholtz分解提取纯纵波和纯横波波场,使用震源归一化的互相关成像条件获得纯波成像,避免了直接使用坐标分量成像而引起的纵横波串扰问题.针对转换波成像的极性反转问题,文中提出一种共炮域极性校正方法.为有效节约存储成本,也提出一种适用于弹性波逆时偏移的震源波场逆时重建方法,在震源波场正传过程中,仅保存PML边界内若干层的速度分量波场,进而逆时重建出所有分量的震源波场.本文分别对地堑模型和Marmousi2模型进行了弹性波逆时偏移成像测试,结果表明:所提出的共炮域极性校正方法正确有效,基于波场分离的弹性波逆时偏移成像的纯波数据能够对复杂地下构造准确成像.

  • 加载中
  • 图 1 

    弹性波逆时偏移流程

    Figure 1. 

    Flow chart of elastic reverse time migration (ERTM)

    图 2 

    边界存储

    Figure 2. 

    Schematic diagram of boundary storage

    图 3 

    均匀各向同性介质的弹性波波场快照(t=0.11 s,0.21 s,0.31 s,0.41 s)

    Figure 3. 

    Snapshots of homogeneous isotropic medium at 0.11 s, 0.21 s, 0.31 s and 0.41 s

    图 4 

    正传及反传的水平分量弹性波波场(t=0.31 s)单道对比

    Figure 4. 

    Single trace comparison of forward-propagating and backward-propagating horizontal component wavefield at 0.31 s

    图 5 

    正传及反传的垂直分量弹性波波场(t=0.31 s)单道对比

    Figure 5. 

    Single trace comparison of forward-propagating and backward-propagating vertical component wavefield at 0.31 s

    图 6 

    多分量波场快照及波场分离结果

    Figure 6. 

    Snapshots of multi-component wavefields and separated P-and S-wavefields

    图 7 

    S波的极性反转

    Figure 7. 

    Schematic diagram of polarity reversal of S-waves

    图 8 

    地堑模型参数及单炮成像结果

    Figure 8. 

    Graben model parameters and single-shot imaging results

    图 9 

    Marmousi2速度模型及不同类型的叠加成像剖面

    Figure 9. 

    P-wave velocity and different types of stacked imaging profiles for Marmousi2 model

    图 10 

    图 9的局部放大

    Figure 10. 

    Partial enlargement of Fig. 9

    图 11 

    含高斯噪声(sn=5) 的第85炮地震记录

    Figure 11. 

    Seismograms bearing Gaussian noise (sn=5) of the 85th shot

    图 12 

    含高斯噪声的地震记录偏移结果

    Figure 12. 

    Results of seismic migration with Gaussian noise for the Marmousi2 model

  •  

    Baysal E, Kosloff D D, Sherwood J W C. 1983. Reverse time migration. Geophysics, 48(11):1514-1524, doi:10.1190/1.1441434.

     

    Chang W F, McMechan G A. 1987. Elastic reverse-time migration. Geophysics, 52(10):1365-1375, doi:10.1190/1.1442249.

     

    Chang W F, McMechan G A. 1994. 3-D elastic prestack, reverse-time depth migration. Geophysics, 59(4):597-609, doi:10.1190/1.1443620.

     

    Chattopadhyay S, McMechan G A. 2008. Imaging conditions for prestack reverse-time migration. Geophysics, 73(3):S81-S89, doi:10.1190/1.2903822.

     

    Clapp R G. 2009. Reverse time migration with random boundaries.//79th Annual International Meeting, SEG. Expanded Abstracts, 2809-2813.

     

    Du Q Z, Zhu Y T, Ba J. 2012. Polarity reversal correction for elastic reverse time migration. Geophysics, 77(2):S31-S41, doi:10.1190/geo2011-0348.1.

     

    Duan Y T, Sava P. 2015. Scalar imaging condition for elastic reverse time migration. Geophysics, 80(4):S127-S136, doi:10.1190/geo2014-0453.1.

     

    Feng B, Wang H Z. 2012. Reverse time migration with source wavefield reconstruction strategy. J. Geophys. Eng., 9(1):69-74, doi:10.1088/1742-2132/9/1/008.

     

    Gu B L, Li Z Y, Ma X N, et al. 2015. Multi-component elastic reverse time migration based on the P-and S-wave separated velocity-stress equations. Journal of Applied Geophysics, 112:62-78, doi:10.1016/j.jappgeo.2014.11.008.

     

    Jin H, McMechan G A, Nguyen B. 2015. Improving input/output performance in 2D and 3D angle-domain common-image gathers from reverse time migration. Geophysics, 80(2):S65-S77, doi:10.1190/GEO2014-0209.1.

     

    Li B, Liu H W, Liu G F, et al. 2010. Computational strategy of seismic pre-stack reverse time migration on CPU/GPU. Chinese J. Geophys. (in Chinese), 53(12):2938-2943, doi:10.3969/j.issn.0001-5733.2010.12.017.

     

    Li Z Y, Ma X N, Fu C, et al. 2016. Wavefield separation and polarity reversal correction in elastic reverse time migration. Journal of Applied Geophysics, 127:56-67, doi:10.1016/j.jappgeo.2016.02.012.

     

    Liu G F, Liu H, Li B, et al. 2009. Method of prestack time migration of seismic data of mountainous regions and its GPU implementation. Chinese J. Geophys. (in Chinese), 52(12):3101-3108, doi:10.3969/j.issn.0001-5733.2009.12.019.

     

    Liu H W, Li B, Liu H, et al. 2010. The algorithm of high order finite difference pre-stack reverse time migration and GPU implementation. Chinese J. Geophys. (in Chinese), 53(7):1725-1733, doi:10.3969/j.issn.0001-5733.2010.07.024.

     

    Loewenthal D, Mufti I R. 1983. Reversed time migration in spatial frequency domain. Geophysics, 48(5):627-635, doi:10.1190/1.1441493.

     

    Madariaga R. 1976. Dynamics of an expanding circular fault. Bulletin of the Seismological Society of America, 66(3):639-666.

     

    Martin G S, Wiley R, Marfurt K J. 2006. Marmousi2:An elastic upgrade for Marmousi. The Leading Edge, 25(2):156-166, doi:10.1190/1.2172306.

     

    McMechan G A. 1983. Migration by extrapolation of time-dependent boundary values. Geophysical Prospecting, 31(3):413-420, doi:10.1111/j.1365-2478.1983.tb01060.x.

     

    Nguyen B D, McMechan G A. 2013. Excitation amplitude imaging condition for prestack reverse-time migration. Geophysics, 78(1):S37-S46, doi:10.1190/GEO2012-0079.1.

     

    Nguyen B D, McMechan G A. 2015. Five ways to avoid storing source wavefield snapshots in 2D elastic prestack reverse time migration. Geophysics, 80(1):S1-S8, doi:10.1190/geo2014-0014.1.

     

    Rosales D, Rickett J. 2001. PS-wave polarity reversal in angle domain common-image gathers.//71st Annual International Meeting, SEG. Expanded Abstracts, 1843-1846.

     

    Rosales D A, Fomel S, Biondi B, et al. 2008. Wave-equation angle-domain common-image gathers for converted waves. Geophysics, 73(1):S17-S26, doi:10.1190/1.2821193.

     

    Sun R, McMechan G A. 1986. Pre-stack reverse-time migration for elastic waves with application to synthetic offset vertical seismic profiles. Proc. IEEE, 74(3):457-465, doi:10.1109/PROC.1986.13486.

     

    Symes W W. 2007. Reverse time migration with optimal checkpointing. Geophysics, 72(5):SM213-SM221, doi:10.1190/1.2742686.

     

    Virieux J. 1986. P-SV wave propagation in heterogeneous media:Velocity-stress finite-difference method. Geophysics, 51(4):889-901, doi:10.1190/1.1442147.

     

    Wang B L, Gao J H, Chen W C, et al. 2012. Efficient boundary storage strategies for seismic reverse time migration. Chinese J. Geophys. (in Chinese), 55(7):2412-2421, doi:10.6038/j.issn.0001-5733.2012.07.025.

     

    Wang W L, McMechan G A. 2015. Vector-based elastic reverse time migration. Geophysics, 80(6):S245-S258, doi:10.1190/geo2014-0620.1.

     

    Wang W L, McMechan G A, Tang C, et al. 2016. Up/down and P/S decompositions of elastic wavefields using complex seismic traces with applications to calculating Poynting vectors and angle-domain common-image gathers from reverse time migrations. Geophysics, 81(4):S181-S194, doi:10.1190/geo2015-0456.1.

     

    Whitmore N D. 1983. Iterative depth migration by backward time propagation.//53rd Annual International Meeting, SEG. Expanded Abstracts, 827-830.

     

    Yan J, Sava P. 2008. Isotropic angle-domain elastic reverse-time migration. Geophysics, 73(6):S229-S239, doi:10.1190/1.2981241.

     

    Zhang Q S, McMechan G A. 2011a. Direct vector-field method to obtain angle-domain common-image gathers from isotropic acoustic and elastic reverse time migration. Geophysics, 76(5):WB135-WB149, doi:10.1190/geo2010-0314.1.

     

    Zhang Q S, McMechan G A. 2011b. Common-image gathers in the incident phase-angle domain from reverse time migration in 2D elastic VTI media. Geophysics, 76(6):S197-S206, doi:10.1190/geo2011-0015.1.

     

    李博, 刘红伟, 刘国峰等. 2010.地震叠前逆时偏移算法的CPU/GPU实施对策.地球物理学报, 53(12):2938-2943, doi:10.3969/j.issn.0001-5733.2010.12.017. http://www.geophy.cn/CN/abstract/abstract3450.shtml

     

    刘国峰, 刘洪, 李博等. 2009.山地地震资料叠前时间偏移方法及其GPU实现.地球物理学报, 52(12):3101-3108, doi:10.3969/j.issn.0001-5733.2009.12.019. http://www.geophy.cn/CN/abstract/abstract1041.shtml

     

    刘红伟, 李博, 刘洪等. 2010.地震叠前逆时偏移高阶有限差分算法及GPU实现.地球物理学报, 53(7):1725-1733, doi:10.3969/j.issn.0001-5733.2010.07.024. http://www.geophy.cn/CN/abstract/abstract3216.shtml

     

    王保利, 高静怀, 陈文超等. 2012.地震叠前逆时偏移的有效边界存储策略.地球物理学报, 55(7):2412-2421, doi:10.6038/j.issn.0001-5733.2012.07.025. http://www.geophy.cn/CN/abstract/abstract8810.shtml

  • 加载中

(12)

计量
  • 文章访问数:  431
  • PDF下载数:  1444
  • 施引文献:  0
出版历程
收稿日期:  2016-11-11
修回日期:  2017-03-16
上线日期:  2017-07-05

目录