青藏高原东北缘地壳各向异性及其动力学意义

谢振新, 吴庆举, 张瑞青. 2017. 青藏高原东北缘地壳各向异性及其动力学意义. 地球物理学报, 60(6): 2315-2325, doi: 10.6038/cjg20170623
引用本文: 谢振新, 吴庆举, 张瑞青. 2017. 青藏高原东北缘地壳各向异性及其动力学意义. 地球物理学报, 60(6): 2315-2325, doi: 10.6038/cjg20170623
XIE Zhen-Xin, WU Qing-Ju, ZHANG Rui-Qing. 2017. Crustal anisotropy beneath northeastern margin of the Tibetan Plateau and its dynamic implications. Chinese Journal of Geophysics (in Chinese), 60(6): 2315-2325, doi: 10.6038/cjg20170623
Citation: XIE Zhen-Xin, WU Qing-Ju, ZHANG Rui-Qing. 2017. Crustal anisotropy beneath northeastern margin of the Tibetan Plateau and its dynamic implications. Chinese Journal of Geophysics (in Chinese), 60(6): 2315-2325, doi: 10.6038/cjg20170623

青藏高原东北缘地壳各向异性及其动力学意义

  • 基金项目:

    国家自然科学基金(41274088),地震行业科研专项(201308011)资助

详细信息
    作者简介:

    谢振新, 男, 1992年生, 在读博士生, 主要从事地球深部构造方面的研究.E-mail:xiezhenxin_xzx@163.com

    通讯作者: 吴庆举, 男, 1966年生, 研究员, 从事地震学、地球动力学方面的研究.E-mail:wuqj@cea-igp.ac.cn
  • 中图分类号: P315

Crustal anisotropy beneath northeastern margin of the Tibetan Plateau and its dynamic implications

More Information
  • 利用中国地震科学探测台阵项目二期(ChinaArray Ⅱ)81个台站的地震数据,使用时间域反褶积方法提取接收函数,挑选满足要求的高质量Ps震相,通过改进的剪切波分裂计算方法获取了53个台站共130对高质量各向异性参数对.地壳各向异性分析指出,研究区东南部地区地壳各向异性方向为NWW向,与XKS各向异性方向、GPS速度场三者近平行关系,说明该地区在青藏高原向欧亚大陆增生的过程中是一个耦合的连贯变形过程;位于研究区中、北部地区的地壳各向异性方向表现为NEE-SWW或E-W方向,与GPS速度场方向一致,而与XKS结果的偏振方向大角度相交,说明该地区受到青藏高原下地壳塑性管道流的影响,可能存在壳幔解耦作用.

  • 加载中
  • 图 1 

    研究区主要构造带及台站分布

    Figure 1. 

    Map showing the major tectonic belts and distribution of seismic stations

    图 2 

    Ps震相各向异性分裂计算示例

    Figure 2. 

    A example of shear-wave splitting analysis

    图 3 

    挑选的地震事件后方位角分布黑色十字代表事件分布, 星代表研究区.

    Figure 3. 

    The distributions of back azimuth for selected eventsBlack crosses show the events, and star represents the study area.

    图 4 

    所有事件的快剪切波偏振方向等面积投影玫瑰图

    Figure 4. 

    Equal-area project rose diagram of fast shear-wave polarization of all selected events

    图 5 

    研究区台站下方各向异性综合分析

    Figure 5. 

    Comprehensive analysis diagram of anisotropy beneath seismic stations

    图 6 

    地壳各向异性方向与GPS速度方向夹角分布

    Figure 6. 

    Distribution of angles between fast polarization directions and GPS velocity vectors

    图 7 

    地壳各向异性方向与地壳应力方向夹角分布

    Figure 7. 

    Distribution of angles between fast polarization directions and crustal stress vectors

  •  

    Argand E. 1922. La tectonique de l'Asie. Conférence faite á Bruxelles, le 10 août 1922.//Congrès Géologique International (XIIIe session)-Belgique. 171-372.

     

    Bao X W, Song X D, Xu M J, et al. 2013. Crust and upper mantle structure of the North China Craton and the NE Tibetan Plateau and its tectonic implications. Earth Planet. Sci. Lett., 369-370: 129-137. doi: 10.1016/j.epsl.2013.03.015

     

    Chang L J, Wang C Y, Ding Z F, et al. 2008. Seismic anisotropy of upper mantle in the northeastern margin of the Tibetan Plateau. Chinese J. Geophys. (in Chinese), 2008, 51(2): 431-438. http://adsabs.harvard.edu/abs/2007AGUFM.T13B1331C

     

    Chang L J, Ding Z F, Wang C Y. 2015. Upper mantle anisotropy beneath the southern segment of North-South tectonic belt, China. Chinese J. Geophys. (in Chinese), 58(11): 4052-4067, doi: 10.6038/cjg20151114.

     

    Clark M K, Royden L H. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8): 703-706. doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2

     

    Crampin S. 1994 The fracture criticality of crustal rocks. Geophys. J. Int., 118(2): 428-438. doi: 10.1111/j.1365-246X.1994.tb03974.x

     

    Deng Q D, Zhang P Z, Ran Y K, et al. 2003. Basic characteristics of active tectonics of China. Sci. China (Ser. D), 46(4): 356-372.

     

    Dewey J F, Burke K C A. 1973. Tibetan, Variscan, and Precambrian basement reactivation: products of continental collision. J. Geol., 81(6): 683-692. doi: 10.1086/627920

     

    England P, McKenzie D. 1982. A thin viscous sheet model for continental deformation. Geophys. J. Int., 70(2): 295-321. doi: 10.1111/j.1365-246X.1982.tb04969.x

     

    Gan W J, Zhang P Z, Shen Z K, et al. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J. Geophys. Res., 112(B8): B08416. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.463.9714&rep=rep1&type=pdf

     

    Gao S S, Liu K H. 2009. Significant seismic anisotropy beneath the southern Lhasa Terrane, Tibetan Plateau. Geochem., Geophys., Geosyst., 10(2): Q02008. http://web.mst.edu/~liukh/publications/Gao_Liu_GGG2009_Tibet_Anisotropy.pdf

     

    Gao Y, Wu J, Yi G X, et al. 2010. Crust-mantle coupling in North China: Preliminary analysis from seismic anisotropy. Chinese Sci. Bull., 55(31): 3599-3605, doi: 10.1007/s11434-010-4135-y.

     

    Gripp A E, Gordon R G. 2002. Young tracks of hotspots and current plate velocities. Geophys. J. Int., 150(2): 321-361. doi: 10.1046/j.1365-246X.2002.01627.x

     

    Guo G H, Zhang Z, Cheng J W, et al. 2015. Seismic anisotropy in the crust in northeast margin of Tibetan Plateau and tectonic implication. Chinese J. Geophys. (in Chinese), 58(11): 4092-4105, doi: 10.6038/cjg20151117.

     

    Heidbach O, Tingay M, Barth A, et al. 2010. Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics, 482(1-4): 3-15. doi: 10.1016/j.tecto.2009.07.023

     

    Li J, Wang X J, Niu F L. 2011a. Seismic anisotropy and implications for mantle deformation beneath the NE margin of the Tibet plateau and Ordos plateau. Phys. Earth Planet. Int., 189(3-4): 157-170. doi: 10.1016/j.pepi.2011.08.009

     

    Li S L, Mooney W D, Fan J C. 2006. Crustal structure of mainland China from deep seismic sounding data. Tectonophysics, 420(1-2): 239-252. doi: 10.1016/j.tecto.2006.01.026

     

    Li X F, Santosh M, Cheng S H, et al. 2015. Crustal structure and composition beneath the northeastern Tibetan plateau from receiver function analysis. Phys. Earth Planet. Int., 249: 51-58. doi: 10.1016/j.pepi.2015.10.001

     

    Li Y H, Wu Q J, An Z H, et al. 2006. The Poisson ratio and crustal structure across the NE Tibetan Plateau determined from receiver functions. Chinese J. Geophys. (in Chinese), 2006, 49(5): 1359-1368.

     

    Li Y H, Wu Q J, Zhang F X, et al. 2011b. Seismic anisotropy of the Northeastern Tibetan Plateau from shear wave splitting analysis. Earth Planet. Sci. Lett., 304(1-2): 147-157. doi: 10.1016/j.epsl.2011.01.026

     

    Liu M, Mooney W D, Li S, et al. 2006. Crustal structure of the northeastern margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin. Tectonophysics, 420(1-2): 253-266. doi: 10.1016/j.tecto.2006.01.025

     

    Liu Q M, Zhao J M, Lu F, et al. 2014. Crustal structure of northeastern margin of the Tibetan Plateau by receiver function inversion. Sci. China: Earth Sci., 57(4): 741-750, doi: 10.1007/s11430-013-4772-5.

     

    Niu Z J, Wang M, Sun H R, et al. 2005. Contemporary velocity field of crustal movement of Chinese mainland from Global Positioning system measurements. Chinese Science Bulletin, 2005, 50(9): 939-941, doi: 10.1007/BF02897392.

     

    Qiang Z Y, Wu Q J, Li Y H, et al. 2016. Crustal anisotropy beneath central-south Mongolia and its dynamic implications. Chinese J. Geophys. (in Chinese), 59(5): 1616-1628, doi: 10.6038/cjg20160507.

     

    Royden L. 1996. Coupling and decoupling of crust and mantle in convergent orogens: Implications for strain partitioning in the crust. J. Geophys. Res. Solid Earth, 101(B8): 17679-17705. doi: 10.1029/96JB00951

     

    Savage M K. 1999. Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting?. Rev. Geophy., 37(1): 65-106. doi: 10.1029/98RG02075

     

    Savage M K, Wessel A, Teanby N A, et al. 2010. Automatic measurement of shear wave splitting and applications to time varying anisotropy at Mount Ruapehu volcano, New Zealand. J. Geophys. Res. Atmos., 2010, 115(B12): B123211-70.

     

    Shen X Z, Yuan X H, Ren J S. 2015. Anisotropic low-velocity lower crust beneath the northeastern margin of Tibetan Plateau: Evidence for crustal channel flow. Geochem., Geophy., Geosyst, 16(12): 4223-4236. doi: 10.1002/2015GC005952

     

    Silver P G, Chan W W. 1988. Implications for continental structure and evolution from seismic anisotropy. Nature, 335(6185): 34-39. doi: 10.1038/335034a0

     

    Silver P G, Chan W W. 1991. Shear wave splitting and subcontinental mantle deformation. J. Geophys. Res.: Solid Earth, 96(B10): 16429-16454. doi: 10.1029/91JB00899

     

    Silver P G. 1996. Seismic anisotropy beneath the continents: Probing the depths of geology. Ann. Rev. Earth Planet. Sci., 24(1): 385-432. doi: 10.1146/annurev.earth.24.1.385

     

    Tapponnier P, Peltzer G, Le Dain A Y, et al. 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12): 611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2

     

    Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet plateau. Science, 294(5547): 1671-1677. doi: 10.1126/science.105978

     

    Teanby N A, Kendall J M, Baan M V D. 2004. Automation of shear-wave splitting measurements using cluster analysis. Bull. Seismol. Soc. Am., 94(2): 453-463. doi: 10.1785/0120030123

     

    Wüstefeld A, Bokelmann G, Barruol G, et al. 2009. Identifying global seismic anisotropy patterns by correlating shear-wave splitting and surface-wave data. Phys. Earth Planet. Int., 2009, 176(3-4): 198-212. doi: 10.1016/j.pepi.2009.05.006

     

    Wang C Y, Chang L J, Lü Z Y, et al. 2007. Seismic anisotropy of upper mantle in eastern Tibetan Plateau and related crust-mantle coupling pattern. Science in China Series D: Earth Sciences, 50(8): 1150-1160. doi: 10.1007/s11430-007-0053-5

     

    Wang C Y, Flesch L M, Silver P G, et al. 2008. Evidence for mechanically coupled lithosphere in central Asia and resulting implications. Geology, 36(5): 363-366. doi: 10.1130/G24450A.1

     

    Wang Q, Zhang P Z, Freymueller J T, et al. 2001. Present-day crustal deformation in China constrained by global positioning system measurements. Science, 294(5542): 574-577. doi: 10.1126/science.1063647

     

    Wang Q, Gao Y, Shi Y T, et al. 2013. Seismic anisotropy in the uppermost mantle beneath the northeastern margin of Qinghai-Tibet plateau: evidence from shear wave splitting of SKS, PKS and SKKS. Chinese J. Geophys. (in Chinese), 56(3): 892-905, doi: 10.6038/cjg20130318

     

    Wang Q, Niu F L, Gao Y, et al. 2016. Crustal structure and deformation beneath the NE margin of the Tibetan plateau constrained by teleseismic receiver function data. Geophys. J. Int., 2016, 204(1): 167-179.

     

    Wessel A. 2010. Automatic shear wave splitting measurements at Mt. Ruapehu Volcano, New Zealand[Master thesis]. Victoria University of Wellington.

     

    Wessel P, Smith W H F. 1998. New, improved version of Generic Mapping Tools released. EOS, Trans. Amer. Geophys. Union, 79(47): 579. doi: 10.1029/98EO00426

     

    Wu J, Zhang Z J, Kong F S, et al. 2015. Complex seismic anisotropy beneath western Tibet and its geodynamic implications. Earth Planet. Sci. Lett., 413: 167-175. doi: 10.1016/j.epsl.2015.01.002

     

    Yang Y, Chen J Y, Yang X S, et al. 2010. Does alignment of melt enhance seismic anisotropy beneath Tibet?. Seismology and Geology (in Chinese), 32(1): 59-69.

     

    Ye Z, Gao R, Li Q S, et al. 2015. Seismic evidence for the North China plate underthrusting beneath northeastern Tibet and its implications for plateau growth. Earth Planet. Sci. Lett., 426: 109-117. doi: 10.1016/j.epsl.2015.06.024

     

    Ye Z, Li Q S, Gao R, et al. 2016. Anisotropic regime across northeastern Tibet and its geodynamic implications. Tectonophysics, 671: 1-8. doi: 10.1016/j.tecto.2016.01.011

     

    Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Ann. Rev. Earth Planet. Sci., 28(1): 211-280. doi: 10.1146/annurev.earth.28.1.211

     

    Yuan D Y, He W G, Liu X F, et al. 2006. The characteristics of seismogenic structure of middle-strong earthquakes in recent 10 years, Gansu Province. Northwestern Seismological Journal (in Chinese), 2006, 28(3): 235-241.

     

    Zhang G C, Wu Q J, Li Y H, et al. 2013. An investigation on crustal anisotropy of Northeast China using Moho Ps converted phase. Acta Seismologica Sinica (in Chinese), 35(4): 485-497. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB201304004.htm

     

    Zhang H, Gao Y, Shi Y T, et al. 2012. Tectonic stress analysis based on the crustal seismic anisotropy in the northeastern margin of Tibetan plateau. Chinese J. Geophys. (in Chinese), 2012, 55(1): 95-104, doi: 10.6038/j.issn.0001-5733.2012.01.009.

     

    Zhang H S, Teng J W, Tian X B, et al. 2012. Lithospheric thickness and upper-mantle deformation beneath the NE Tibetan Plateau inferred from S receiver functions and SKS splitting measurements. Geophys. J. Int., 191(3): 1285-1294. https://academic.oup.com/gji/article-pdf/191/3/1285/1495996/191-3-1285.pdf

     

    Zhang Z J, Bai Z M, Klemperer S L, et al. 2013. Crustal structure across northeastern Tibet from wide-angle seismic profiling: Constraints on the Caledonian Qilian orogeny and its reactivation. Tectonophysics, 606: 140-159. doi: 10.1016/j.tecto.2013.02.040

     

    Zhu L, Kanamori H. Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research: Solid Earth, 2000, 105(B2): 2969-2980. doi: 10.1029/1999JB900322

     

    Zhu S, Yang B. 2014. Analysis of recent horizontal deformation in the northeastern margin of the Qinghai-Tibetan plateau. Journal of Geodesy and Geodynamics (in Chinese), 34(3): 81-85.

     

    常利军, 王椿镛, 丁志峰等. 2008.青藏高原东北缘上地幔各向异性研究.地球物理学报, 51(2): 431-438. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract452.shtml

     

    常利军, 丁志峰, 王椿镛. 2015.南北构造带南段上地幔各向异性特征.地球物理学报, 58(11): 4052-4067, doi: 10.6038/cjg20151114. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract11979.shtml

     

    邓起东, 张培震, 冉勇康等. 2002.中国活动构造基本特征.中国科学:地球科学, 32(12): 1020-1030. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200212006.htm

     

    高原, 吴晶, 易桂喜等. 2010.从壳幔地震各向异性初探华北地区壳幔耦合关系.科学通报, 55(29): 2837-2843. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201029009.htm

     

    郭桂红, 张智, 程建武等. 2015.青藏高原东北缘地壳各向异性的构造含义.地球物理学报, 58(11): 4092-4105, doi: 10.6038/cjg20151117. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract11982.shtml

     

    李永华, 吴庆举, 安张辉等. 2006.青藏高原东北缘地壳S波速度结构与泊松比及其意义.地球物理学报, 49(5): 1359-1368. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract610.shtml

     

    强正阳, 吴庆举, 李永华等. 2016.蒙古中南部地区地壳各向异性及其动力学意义.地球物理学报, 59(5): 1616-1628, doi: 10.6038/cjg20160507. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract12771.shtml

     

    王椿镛, 常利军, 吕智勇等. 2007.青藏高原东部上地幔各向异性及相关的壳幔耦合型式.中国科学:地球科学, 37(4): 495-503. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200704007.htm

     

    王琼, 高原, 石玉涛等. 2013.青藏高原东北缘上地幔地震各向异性:来自SKS、PKS和SKKS震相分裂的证据.地球物理学报, 56(3): 892-905, doi: 10.6038/cjg20130318. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract9336.shtml

     

    杨彧, 陈建业, 杨晓松等. 2010.部分熔融强化了青藏高原地壳的各向异性?.地震地质, 32(1): 59-69. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201001007.htm

     

    袁道阳, 何文贵, 刘小凤等. 2006. 10余年来甘肃省中强地震的发震构造特征.西北地震学报, 28(3): 235-241. http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ200603007.htm

     

    张广成, 吴庆举, 李永华等. 2013.利用莫霍面Ps震相研究中国东北地区地壳各向异性.地震学报, 35(4): 485-497. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201304004.htm

     

    张辉, 高原, 石玉涛等. 2012.基于地壳介质各向异性分析青藏高原东北缘构造应力特征.地球物理学报, 55(1): 95-104, doi: 10.6038/j.issn.0001-5733.2012.01.009. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract8383.shtml

     

    朱爽, 杨博. 2014.青藏高原东北缘近期水平形变场分析.大地测量与地球动力学, 34(3): 81-85. http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201403020.htm

  • 加载中

(7)

计量
  • 文章访问数:  458
  • PDF下载数:  1060
  • 施引文献:  0
出版历程
收稿日期:  2016-12-08
修回日期:  2017-04-20
上线日期:  2017-06-05

目录