Crustal anisotropy beneath northeastern margin of the Tibetan Plateau and its dynamic implications
-
摘要:
利用中国地震科学探测台阵项目二期(ChinaArray Ⅱ)81个台站的地震数据,使用时间域反褶积方法提取接收函数,挑选满足要求的高质量Ps震相,通过改进的剪切波分裂计算方法获取了53个台站共130对高质量各向异性参数对.地壳各向异性分析指出,研究区东南部地区地壳各向异性方向为NWW向,与XKS各向异性方向、GPS速度场三者近平行关系,说明该地区在青藏高原向欧亚大陆增生的过程中是一个耦合的连贯变形过程;位于研究区中、北部地区的地壳各向异性方向表现为NEE-SWW或E-W方向,与GPS速度场方向一致,而与XKS结果的偏振方向大角度相交,说明该地区受到青藏高原下地壳塑性管道流的影响,可能存在壳幔解耦作用.
Abstract:We present anisotropy results using Ps phase in receiver functions, which are computed from the data of 81 seismic stations in northeastern margin of Tibetan Plateau. We use a modified automatic shear-wave splitting method to compute the anisotropic parameters using selected Ps phase. We would like to discuss about dynamic mechanism in this area using crustal anisotropy associated with the result of SKS-splitting and surface constraints like GPS velocity. The result can be summarized as follows. The large delay times imply that the crustal anisotropy is mainly derived from middle to lower crust rather than upper crust. In the southeastern part of the research area, crustal anisotropy agrees well with the result computed form SKS phase and GPS velocity directions trending NWW-SEE or E-W. This result implies a vertically coherent deformation in the area as the directions of crustal anisotropy trend to be perpendicular to the direction of normal stress. In the middle and north part of the research area, the fast polarization direction of crustal anisotropy is NEE-SWW or E-W, parallels the direction of GPS velocity, and differs from the direction of the result of XKS-phase. This result implies that decoupled deformation in this area is associated with middle to lower crustal flow.
-
Key words:
- NE Tibetan Plateau /
- Crustal anisotropy /
- Ps-phase /
- Shear-wave splitting
-
-
-
Argand E. 1922. La tectonique de l'Asie. Conférence faite á Bruxelles, le 10 août 1922.//Congrès Géologique International (XIIIe session)-Belgique. 171-372.
Bao X W, Song X D, Xu M J, et al. 2013. Crust and upper mantle structure of the North China Craton and the NE Tibetan Plateau and its tectonic implications. Earth Planet. Sci. Lett., 369-370: 129-137. doi: 10.1016/j.epsl.2013.03.015
Chang L J, Wang C Y, Ding Z F, et al. 2008. Seismic anisotropy of upper mantle in the northeastern margin of the Tibetan Plateau. Chinese J. Geophys. (in Chinese), 2008, 51(2): 431-438. http://adsabs.harvard.edu/abs/2007AGUFM.T13B1331C
Chang L J, Ding Z F, Wang C Y. 2015. Upper mantle anisotropy beneath the southern segment of North-South tectonic belt, China. Chinese J. Geophys. (in Chinese), 58(11): 4052-4067, doi: 10.6038/cjg20151114.
Clark M K, Royden L H. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8): 703-706. doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2
Crampin S. 1994 The fracture criticality of crustal rocks. Geophys. J. Int., 118(2): 428-438. doi: 10.1111/j.1365-246X.1994.tb03974.x
Deng Q D, Zhang P Z, Ran Y K, et al. 2003. Basic characteristics of active tectonics of China. Sci. China (Ser. D), 46(4): 356-372.
Dewey J F, Burke K C A. 1973. Tibetan, Variscan, and Precambrian basement reactivation: products of continental collision. J. Geol., 81(6): 683-692. doi: 10.1086/627920
England P, McKenzie D. 1982. A thin viscous sheet model for continental deformation. Geophys. J. Int., 70(2): 295-321. doi: 10.1111/j.1365-246X.1982.tb04969.x
Gan W J, Zhang P Z, Shen Z K, et al. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J. Geophys. Res., 112(B8): B08416. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.463.9714&rep=rep1&type=pdf
Gao S S, Liu K H. 2009. Significant seismic anisotropy beneath the southern Lhasa Terrane, Tibetan Plateau. Geochem., Geophys., Geosyst., 10(2): Q02008. http://web.mst.edu/~liukh/publications/Gao_Liu_GGG2009_Tibet_Anisotropy.pdf
Gao Y, Wu J, Yi G X, et al. 2010. Crust-mantle coupling in North China: Preliminary analysis from seismic anisotropy. Chinese Sci. Bull., 55(31): 3599-3605, doi: 10.1007/s11434-010-4135-y.
Gripp A E, Gordon R G. 2002. Young tracks of hotspots and current plate velocities. Geophys. J. Int., 150(2): 321-361. doi: 10.1046/j.1365-246X.2002.01627.x
Guo G H, Zhang Z, Cheng J W, et al. 2015. Seismic anisotropy in the crust in northeast margin of Tibetan Plateau and tectonic implication. Chinese J. Geophys. (in Chinese), 58(11): 4092-4105, doi: 10.6038/cjg20151117.
Heidbach O, Tingay M, Barth A, et al. 2010. Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics, 482(1-4): 3-15. doi: 10.1016/j.tecto.2009.07.023
Li J, Wang X J, Niu F L. 2011a. Seismic anisotropy and implications for mantle deformation beneath the NE margin of the Tibet plateau and Ordos plateau. Phys. Earth Planet. Int., 189(3-4): 157-170. doi: 10.1016/j.pepi.2011.08.009
Li S L, Mooney W D, Fan J C. 2006. Crustal structure of mainland China from deep seismic sounding data. Tectonophysics, 420(1-2): 239-252. doi: 10.1016/j.tecto.2006.01.026
Li X F, Santosh M, Cheng S H, et al. 2015. Crustal structure and composition beneath the northeastern Tibetan plateau from receiver function analysis. Phys. Earth Planet. Int., 249: 51-58. doi: 10.1016/j.pepi.2015.10.001
Li Y H, Wu Q J, An Z H, et al. 2006. The Poisson ratio and crustal structure across the NE Tibetan Plateau determined from receiver functions. Chinese J. Geophys. (in Chinese), 2006, 49(5): 1359-1368.
Li Y H, Wu Q J, Zhang F X, et al. 2011b. Seismic anisotropy of the Northeastern Tibetan Plateau from shear wave splitting analysis. Earth Planet. Sci. Lett., 304(1-2): 147-157. doi: 10.1016/j.epsl.2011.01.026
Liu M, Mooney W D, Li S, et al. 2006. Crustal structure of the northeastern margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin. Tectonophysics, 420(1-2): 253-266. doi: 10.1016/j.tecto.2006.01.025
Liu Q M, Zhao J M, Lu F, et al. 2014. Crustal structure of northeastern margin of the Tibetan Plateau by receiver function inversion. Sci. China: Earth Sci., 57(4): 741-750, doi: 10.1007/s11430-013-4772-5.
Niu Z J, Wang M, Sun H R, et al. 2005. Contemporary velocity field of crustal movement of Chinese mainland from Global Positioning system measurements. Chinese Science Bulletin, 2005, 50(9): 939-941, doi: 10.1007/BF02897392.
Qiang Z Y, Wu Q J, Li Y H, et al. 2016. Crustal anisotropy beneath central-south Mongolia and its dynamic implications. Chinese J. Geophys. (in Chinese), 59(5): 1616-1628, doi: 10.6038/cjg20160507.
Royden L. 1996. Coupling and decoupling of crust and mantle in convergent orogens: Implications for strain partitioning in the crust. J. Geophys. Res. Solid Earth, 101(B8): 17679-17705. doi: 10.1029/96JB00951
Savage M K. 1999. Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting?. Rev. Geophy., 37(1): 65-106. doi: 10.1029/98RG02075
Savage M K, Wessel A, Teanby N A, et al. 2010. Automatic measurement of shear wave splitting and applications to time varying anisotropy at Mount Ruapehu volcano, New Zealand. J. Geophys. Res. Atmos., 2010, 115(B12): B123211-70.
Shen X Z, Yuan X H, Ren J S. 2015. Anisotropic low-velocity lower crust beneath the northeastern margin of Tibetan Plateau: Evidence for crustal channel flow. Geochem., Geophy., Geosyst, 16(12): 4223-4236. doi: 10.1002/2015GC005952
Silver P G, Chan W W. 1988. Implications for continental structure and evolution from seismic anisotropy. Nature, 335(6185): 34-39. doi: 10.1038/335034a0
Silver P G, Chan W W. 1991. Shear wave splitting and subcontinental mantle deformation. J. Geophys. Res.: Solid Earth, 96(B10): 16429-16454. doi: 10.1029/91JB00899
Silver P G. 1996. Seismic anisotropy beneath the continents: Probing the depths of geology. Ann. Rev. Earth Planet. Sci., 24(1): 385-432. doi: 10.1146/annurev.earth.24.1.385
Tapponnier P, Peltzer G, Le Dain A Y, et al. 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12): 611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet plateau. Science, 294(5547): 1671-1677. doi: 10.1126/science.105978
Teanby N A, Kendall J M, Baan M V D. 2004. Automation of shear-wave splitting measurements using cluster analysis. Bull. Seismol. Soc. Am., 94(2): 453-463. doi: 10.1785/0120030123
Wüstefeld A, Bokelmann G, Barruol G, et al. 2009. Identifying global seismic anisotropy patterns by correlating shear-wave splitting and surface-wave data. Phys. Earth Planet. Int., 2009, 176(3-4): 198-212. doi: 10.1016/j.pepi.2009.05.006
Wang C Y, Chang L J, Lü Z Y, et al. 2007. Seismic anisotropy of upper mantle in eastern Tibetan Plateau and related crust-mantle coupling pattern. Science in China Series D: Earth Sciences, 50(8): 1150-1160. doi: 10.1007/s11430-007-0053-5
Wang C Y, Flesch L M, Silver P G, et al. 2008. Evidence for mechanically coupled lithosphere in central Asia and resulting implications. Geology, 36(5): 363-366. doi: 10.1130/G24450A.1
Wang Q, Zhang P Z, Freymueller J T, et al. 2001. Present-day crustal deformation in China constrained by global positioning system measurements. Science, 294(5542): 574-577. doi: 10.1126/science.1063647
Wang Q, Gao Y, Shi Y T, et al. 2013. Seismic anisotropy in the uppermost mantle beneath the northeastern margin of Qinghai-Tibet plateau: evidence from shear wave splitting of SKS, PKS and SKKS. Chinese J. Geophys. (in Chinese), 56(3): 892-905, doi: 10.6038/cjg20130318
Wang Q, Niu F L, Gao Y, et al. 2016. Crustal structure and deformation beneath the NE margin of the Tibetan plateau constrained by teleseismic receiver function data. Geophys. J. Int., 2016, 204(1): 167-179.
Wessel A. 2010. Automatic shear wave splitting measurements at Mt. Ruapehu Volcano, New Zealand[Master thesis]. Victoria University of Wellington.
Wessel P, Smith W H F. 1998. New, improved version of Generic Mapping Tools released. EOS, Trans. Amer. Geophys. Union, 79(47): 579. doi: 10.1029/98EO00426
Wu J, Zhang Z J, Kong F S, et al. 2015. Complex seismic anisotropy beneath western Tibet and its geodynamic implications. Earth Planet. Sci. Lett., 413: 167-175. doi: 10.1016/j.epsl.2015.01.002
Yang Y, Chen J Y, Yang X S, et al. 2010. Does alignment of melt enhance seismic anisotropy beneath Tibet?. Seismology and Geology (in Chinese), 32(1): 59-69.
Ye Z, Gao R, Li Q S, et al. 2015. Seismic evidence for the North China plate underthrusting beneath northeastern Tibet and its implications for plateau growth. Earth Planet. Sci. Lett., 426: 109-117. doi: 10.1016/j.epsl.2015.06.024
Ye Z, Li Q S, Gao R, et al. 2016. Anisotropic regime across northeastern Tibet and its geodynamic implications. Tectonophysics, 671: 1-8. doi: 10.1016/j.tecto.2016.01.011
Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Ann. Rev. Earth Planet. Sci., 28(1): 211-280. doi: 10.1146/annurev.earth.28.1.211
Yuan D Y, He W G, Liu X F, et al. 2006. The characteristics of seismogenic structure of middle-strong earthquakes in recent 10 years, Gansu Province. Northwestern Seismological Journal (in Chinese), 2006, 28(3): 235-241.
Zhang G C, Wu Q J, Li Y H, et al. 2013. An investigation on crustal anisotropy of Northeast China using Moho Ps converted phase. Acta Seismologica Sinica (in Chinese), 35(4): 485-497. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB201304004.htm
Zhang H, Gao Y, Shi Y T, et al. 2012. Tectonic stress analysis based on the crustal seismic anisotropy in the northeastern margin of Tibetan plateau. Chinese J. Geophys. (in Chinese), 2012, 55(1): 95-104, doi: 10.6038/j.issn.0001-5733.2012.01.009.
Zhang H S, Teng J W, Tian X B, et al. 2012. Lithospheric thickness and upper-mantle deformation beneath the NE Tibetan Plateau inferred from S receiver functions and SKS splitting measurements. Geophys. J. Int., 191(3): 1285-1294. https://academic.oup.com/gji/article-pdf/191/3/1285/1495996/191-3-1285.pdf
Zhang Z J, Bai Z M, Klemperer S L, et al. 2013. Crustal structure across northeastern Tibet from wide-angle seismic profiling: Constraints on the Caledonian Qilian orogeny and its reactivation. Tectonophysics, 606: 140-159. doi: 10.1016/j.tecto.2013.02.040
Zhu L, Kanamori H. Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research: Solid Earth, 2000, 105(B2): 2969-2980. doi: 10.1029/1999JB900322
Zhu S, Yang B. 2014. Analysis of recent horizontal deformation in the northeastern margin of the Qinghai-Tibetan plateau. Journal of Geodesy and Geodynamics (in Chinese), 34(3): 81-85.
常利军, 王椿镛, 丁志峰等. 2008.青藏高原东北缘上地幔各向异性研究.地球物理学报, 51(2): 431-438. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract452.shtml
常利军, 丁志峰, 王椿镛. 2015.南北构造带南段上地幔各向异性特征.地球物理学报, 58(11): 4052-4067, doi: 10.6038/cjg20151114. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract11979.shtml
邓起东, 张培震, 冉勇康等. 2002.中国活动构造基本特征.中国科学:地球科学, 32(12): 1020-1030. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200212006.htm
高原, 吴晶, 易桂喜等. 2010.从壳幔地震各向异性初探华北地区壳幔耦合关系.科学通报, 55(29): 2837-2843. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201029009.htm
郭桂红, 张智, 程建武等. 2015.青藏高原东北缘地壳各向异性的构造含义.地球物理学报, 58(11): 4092-4105, doi: 10.6038/cjg20151117. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract11982.shtml
李永华, 吴庆举, 安张辉等. 2006.青藏高原东北缘地壳S波速度结构与泊松比及其意义.地球物理学报, 49(5): 1359-1368. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract610.shtml
强正阳, 吴庆举, 李永华等. 2016.蒙古中南部地区地壳各向异性及其动力学意义.地球物理学报, 59(5): 1616-1628, doi: 10.6038/cjg20160507. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract12771.shtml
王椿镛, 常利军, 吕智勇等. 2007.青藏高原东部上地幔各向异性及相关的壳幔耦合型式.中国科学:地球科学, 37(4): 495-503. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200704007.htm
王琼, 高原, 石玉涛等. 2013.青藏高原东北缘上地幔地震各向异性:来自SKS、PKS和SKKS震相分裂的证据.地球物理学报, 56(3): 892-905, doi: 10.6038/cjg20130318. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract9336.shtml
杨彧, 陈建业, 杨晓松等. 2010.部分熔融强化了青藏高原地壳的各向异性?.地震地质, 32(1): 59-69. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201001007.htm
袁道阳, 何文贵, 刘小凤等. 2006. 10余年来甘肃省中强地震的发震构造特征.西北地震学报, 28(3): 235-241. http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ200603007.htm
张广成, 吴庆举, 李永华等. 2013.利用莫霍面Ps震相研究中国东北地区地壳各向异性.地震学报, 35(4): 485-497. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201304004.htm
张辉, 高原, 石玉涛等. 2012.基于地壳介质各向异性分析青藏高原东北缘构造应力特征.地球物理学报, 55(1): 95-104, doi: 10.6038/j.issn.0001-5733.2012.01.009. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract8383.shtml
朱爽, 杨博. 2014.青藏高原东北缘近期水平形变场分析.大地测量与地球动力学, 34(3): 81-85. http://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201403020.htm
-