隧道强干扰环境瞬变电磁响应规律与校正方法:以TBM为例

孙怀凤, 李貅, 卢绪山, 李术才, 任宝宏. 隧道强干扰环境瞬变电磁响应规律与校正方法:以TBM为例[J]. 地球物理学报, 2016, 59(12): 4720-4732, doi: 10.6038/cjg20161231
引用本文: 孙怀凤, 李貅, 卢绪山, 李术才, 任宝宏. 隧道强干扰环境瞬变电磁响应规律与校正方法:以TBM为例[J]. 地球物理学报, 2016, 59(12): 4720-4732, doi: 10.6038/cjg20161231
SUN Huai-Feng, LI Xiu, LU Xu-Shan, LI Shu-Cai, REN Bao-Hong. Transient electromagnetic responses in tunnels with strong interferences and the correcting method: A TBM example[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(12): 4720-4732, doi: 10.6038/cjg20161231
Citation: SUN Huai-Feng, LI Xiu, LU Xu-Shan, LI Shu-Cai, REN Bao-Hong. Transient electromagnetic responses in tunnels with strong interferences and the correcting method: A TBM example[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(12): 4720-4732, doi: 10.6038/cjg20161231

隧道强干扰环境瞬变电磁响应规律与校正方法:以TBM为例

详细信息
    作者简介:

    孙怀凤,男,1982年生,博士,讲师,主要从事瞬变电磁正反演方面的教学与科研工作.E-mail:sunhuaifeng@gmail.com

    通讯作者: 李貅,男,1958年生,博士,教授,主要从事瞬变电磁相关理论的教学与科研工作.E-mail:lixiu@chd.edu.cn
  • 中图分类号: P631

Transient electromagnetic responses in tunnels with strong interferences and the correcting method: A TBM example

More Information
  • 以隧道掘进机(Tunnel Boring Machine,TBM)为例模拟了隧道强干扰环境下,瞬变电磁超前探测的响应曲线,系统分析了异常体(以直立充水断层为例)与掌子面距离、围岩电阻率差异、TBM长度、异常体规模等条件下的曲线特征和影响规律,发现TBM干扰源表现为低电阻率目标特征,其影响主要集中在早期,对于电性差异较大或目标规模较大的低电阻率异常(充水断层)模型能够明显地通过衰减曲线区分.根据电磁场叠加原理,将隧道腔体中包含TBM模型的响应减去纯隧道腔体响应可以获得TBM的响应信号,以此作为干扰背景,从实际包含TBM和充水断层的隧道模型总响应中减除,获得去除TBM干扰的响应信号.通过8组算例进行对比,发现经过校正的衰减曲线与模型计算曲线吻合较好,视电阻率曲线差异相对较小,能够表现探测区域的电性分布情况,确认该方法在不同情况下的适用性.即使在TBM响应计算时给定背景电阻率与实际电阻率差异达到100%的情况下,依然能够通过校正获得合理的响应信号和视电阻率曲线.该方法不仅仅适用于隧道环境,对于其他诸如地面、航空、半航空、海洋瞬变电磁勘探同样适用.
  • 加载中
  • [1]

    Jiang Z H, Yue J H, Yu J C. 2010. Experiment in metal disturbance during advanced detection using a transient electromagnetic method in coal mines. Min. Sci. Technol., 20(6): 861-863, doi: 10.1016/S1674-5264(09)60296-9.

    [2]

    Li F M, Liu H F, Zhang X J, et al. 2014. The influence of industrial transmission lines on transient electromagnetićs second magnetic field and the elimination of interference. Progress in Geophys. (in Chinese), 29(3): 1399-1405, doi: 10.6038/pg20140355.

    [3]

    Li S C, Liu B, Sun H F, et al. 2014. State of art and trends of advanced geological prediction in tunnel construction. Chinese J. Rock Mech. Eng. (in Chinese), 33(6): 1090-1113.

    [4]

    Li S, Sun H, Lu X, et al. 2014. Three-dimensional modeling of transient electromagnetic responses of water-bearing structures in front of a tunnel face. J. Environ. Eng. Geophys., 19(1): 13-32, doi: 10.2113/JEEG19.1.13.

    [5]

    Li S C, Nie L C, Liu B, et al. 2015. Advanced detection and physical model test based on multi-electrode sources array resistivity method in tunnel. Chinese J. Geophys. (in Chinese), 58(4): 1434-1446, doi: 10.6038/cjg20150429.

    [6]

    Lu X S. 2014. Three dimensional parallel simulation of transient electromagnetic response of Tunnel Boring Machine and the elimination of its response [Master's thesis] (in Chinese). Xi'an: Chang'an University.

    [7]

    Sun H F, Li X, Li S C, et al. 2012. Multi-component and multi-array TEM detection in karst tunnels. J. Geophys. Eng., 9(4): 359-373, doi: 10.1088/1742-2132/9/4/359.

    [8]

    Sun H F. 2013. Three-dimensional transient electromagnetic responses of water bearing structures in tunnels and prediction of water inrush sources [Ph. D. thesis] (in Chinese). Ji'nan: Shandong University.

    [9]

    Sun H F, Li X, Li S C, et al. 2013. Three-dimensional FDTD modeling of TEM excited by a loop source considering ramp time. Chinese J. Geophys. (in Chinese), 56(3): 1049-1064, doi: 10.6038/cjg20130333.

    [10]

    Um E S, Commer M, Newman G A, et al. 2015. Finite element modelling of transient electromagnetic fields near steel-cased wells. Geophys. J. Int., 202(2): 901-913, doi: 10.1093/gji/ggv193.

    [11]

    Xue G Q, Li X. 2008. The technology of TEM tunnel prediction imaging. Chinese J. Geophys. (in Chinese), 51(3): 894-900.

    [12]

    Zhang X, Li S, Zhang Q, et al. 2011. Field-testing study on seismic reflection response of large-scale underground water-bearing body. Chinese J. Geophys. (in Chinese), 54(5): 1367-1374, doi: 10.3969/j.issn.0001-5733.2011.05.026.

    [13]

    Zhdanov M S, Keller G V. 1994. The Geoelectrical Methods in Geophysical Exploration. Amsterdam: Elsevier.

    [14]

    李风明, 刘鸿福, 张新军等. 2014. 工业输电线对瞬变电磁二次场的影响及干扰的消除. 地球物理学进展, 29(3): 1399-1405, doi: 10.6038/pg20140355.

    [15]

    李术才, 刘斌, 孙怀凤等. 2014. 隧道施工超前地质预报研究现状及发展趋势. 岩石力学与工程学报, 33(6): 1090-1113.

    [16]

    李术才, 聂利超, 刘斌等. 2015. 多同性源阵列电阻率法隧道超前探测方法与物理模拟试验研究. 地球物理学报, 58(4): 1434-1446, doi: 10.6038/cjg20150429.

    [17]

    卢绪山. 2014. 隧道TBM机瞬变电磁响应三维并行模拟及干扰去除研究[硕士论文]. 西安: 长安大学.

    [18]

    孙怀凤. 2013. 隧道含水构造三维瞬变电磁场响应特征及突水灾害源预报研究[博士论文]. 济南: 山东大学.

    [19]

    孙怀凤, 李貅, 李术才等. 2013. 考虑关断时间的回线源激发TEM三维时域有限差分正演. 地球物理学报, 56(3): 1049-1064, doi: 10.6038/cjg20130333.

    [20]

    薛国强, 李貅. 2008. 瞬变电磁隧道超前预报成像技术. 地球物理学报, 51(3): 894-900.

    [21]

    张霄, 李术才, 张庆松等. 2011. 大型地下含水体对地震波特殊反射规律的现场正演试验研究. 地球物理学报, 54(5): 1367-1374, doi: 10.3969/j.issn.0001-5733.2011.05.026.

  • 加载中
计量
  • 文章访问数:  872
  • PDF下载数:  1175
  • 施引文献:  0
出版历程
收稿日期:  2015-06-29
修回日期:  2016-01-20
上线日期:  2016-12-05

目录