时间域航空电磁法激电效应对电磁扩散的影响

殷长春, 缪佳佳, 刘云鹤, 邱长凯, 蔡晶. 时间域航空电磁法激电效应对电磁扩散的影响[J]. 地球物理学报, 2016, 59(12): 4710-4719, doi: 10.6038/cjg20161230
引用本文: 殷长春, 缪佳佳, 刘云鹤, 邱长凯, 蔡晶. 时间域航空电磁法激电效应对电磁扩散的影响[J]. 地球物理学报, 2016, 59(12): 4710-4719, doi: 10.6038/cjg20161230
YIN Chang-Chun, MIAO Jia-Jia, LIU Yun-He, QIU Chang-Kai, CAI Jing. The effect of induced polarization on time-domain airborne EM diffusion[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(12): 4710-4719, doi: 10.6038/cjg20161230
Citation: YIN Chang-Chun, MIAO Jia-Jia, LIU Yun-He, QIU Chang-Kai, CAI Jing. The effect of induced polarization on time-domain airborne EM diffusion[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(12): 4710-4719, doi: 10.6038/cjg20161230

时间域航空电磁法激电效应对电磁扩散的影响

详细信息
    作者简介:

    殷长春,男,1965年生,教授,国家"千人计划"特聘专家,主要从事电磁勘探理论,特别是航空和海洋电磁方面的研究.E-mail:yinchangchun@jlu.edu.cn

    通讯作者: 缪佳佳,男,1992年生,硕士,主要从事航空电磁、激电效应的正反演理论和方法技术研究.E-mail:miaojiajia92@126.com
  • 中图分类号: P631

The effect of induced polarization on time-domain airborne EM diffusion

More Information
  • 由于激发极化效应的影响,时间域航空电磁晚期道信号经常会出现变号现象.基于电阻率的传统反演方法无法对变号数据进行正确反演,因此通常在数据处理中予以剔除.为深入了解极化介质的电磁扩散特征,认识航空瞬变电磁负响应的产生机理,本文研究时间域航空电磁系统的电磁扩散特征.我们以均匀极化、非极化半空间及层状介质模型为例,通过直接积分的方法求解频率域电场响应,并由欧姆定律得到电流响应,再经过汉克尔变换得到时间域电流响应.通过研究电流随时间在地下极化介质中的传播特征研究电磁扩散过程;通过对比不同激电参数对电磁扩散的影响,研究极化介质中感应电流与极化电流的扩散规律,从而合理地解释极化介质中负响应的产生机理.基于本文研究和分析结果,可加深对时间域航空电磁法中激电效应的认识.
  • 加载中
  • [1]

    Börner F D, Schopper J R, Weller A. 1996. Evaluation of transport and storage properties in the soil and groundwater zone from induced polarization measurements. Geophysical Prospecting, 44(4): 583-601.

    [2]

    Chave A D. 1983. Numerical integration of related Hankel transforms by quadrature and continued fraction expansion. Geophysics, 48(12): 1671-1686.

    [3]

    Flis M F, Newman G A, Hohmann G W. 1989. Induced-polarization effects in time-domain electromagnetic measurements. Geophysics, 54(4): 514-523.

    [4]

    Hohmann G W, Kintzinger P R, Van Voorhis G D, et al. 1970. Evaluation of the measurement of induced electrical polarization with an inductive system. Geophysics, 35(5): 901-915.

    [5]

    Hördt A, Blaschek R, Kemna A, et al. 2007. Hydraulic conductivity estimation from induced polarisation data at the field scale-the Krauthausen case history. Journal of Applied Geophysics, 62(1): 33-46.

    [6]

    Kemna A, Binley A, Ramirez A, et al. 2000. Complex resistivity tomography for environmental applications. Chemical Engineering Journal, 77(1-2): 11-18.

    [7]

    Liu Y H. 2011. Research on 3-D controlled source electromagnetic method inversion using nonlinear conjugate gradients (in Chinese). Changchun: Jilin University.

    [8]

    Pelton W H, Ward S H, Hallof P G, et al. 1978. Mineral discrimination and removal of inductive coupling with multifrequency IP. Geophysics, 43(3), 588-609.

    [9]

    Raiche A,Sugeng F,Wilson G.2007. Practical 3D EM inversion? The P223F software suite. ASEG Extended Abstracts,2007(1):1-5.

    [10]

    Slater L, Lesmes D P. 2002. Electrical-hydraulic relationships observed for unconsolidated sediments. Water Resources Research, 38(10): 31-1-31-13.

    [11]

    Smith R S, Walker P W, Polzer B D, et al. 1988. The time-domain electromagnetic response of polarizable bodies: An approximate convolution algorithm. Geophysical Prospecting, 36(7): 772-785.

    [12]

    Smith R S, West G F. 1988. Inductive interaction between polarizable conductors: An explanation of a negative coincident-loop transient electromagnetic response. Geophysics, 53(5): 677-690.

    [13]

    Spies B R. 1980. A field occurrence of sign reversals with the transient electromagnetic method. Geophysical Prospecting, 28(4): 620-632.

    [14]

    Weidelt P. 1982. Response characteristics of coincident loop transient electromagnetic systems. Geophysics, 47(9): 1325-1330.

    [15]

    Williams K H, Kemna A, Wilkins M J, et al. 2009. Geophysical monitoring of coupled microbial and geochemical processes during stimulated subsurface bioremediation. Environmental Science & Technology, 43(17): 6717-6723.

    [16]

    Yin C, Smith R S, Hodges G, et al. 2008. Modeling results of on-and off-time B and dB/dt for time-domain airborne EM systems.//70th Annual EAGE Conference and Exhibition. Extended Abstract, 1-4.

    [17]

    Yin C C, Huang W, Ben F. 2013. The full-time electromagnetic modeling for time-domain airborne electromagnetic systems. Chinese J. Geophys. (in Chinese), 56(9): 3153-3162, doi: 10.6038/cjg20130928.

    [18]

    Yin C C, Huang X, Liu Y H, et al. 2014. Footprint for frequency-domain airborne electromagnetic systems. Geophysics, 79(6): E243-E254.

    [19]

    Yin C C, Zhang B, Liu Y H, et al. 2015. Review on airborne EM technology and developments. Chinese J. Geophy. (in Chinese), 58(8): 2637-2653, doi: 10.6038/cjg20150804.

    [20]

    刘云鹤. 2011. 三维可控源电磁法非线性共轭梯度反演研究. 长春: 吉林大学.

    [21]

    殷长春, 黄威, 贲放. 2013. 时间域航空电磁系统瞬变全时响应正演模拟. 地球物理学报, 56(9): 3153-3162, doi: 10.6038/cjg20130928.

    [22]

    殷长春, 张博, 刘云鹤等. 2015. 航空电磁勘查技术发展现状及展望. 地球物理学报, 58(8): 2637-2653, doi: 10.6038/cjg20150804.

  • 加载中
计量
  • 文章访问数:  1321
  • PDF下载数:  2043
  • 施引文献:  0
出版历程
收稿日期:  2016-04-30
修回日期:  2016-10-10
上线日期:  2016-12-05

目录