A fast topographic correction method for electromagnetic data
-
摘要: 地形起伏会对电磁法的数据产生一定影响,尤其会影响浅部地层电性结果的准确性.本文通过对地形影响基本规律、经典比值校正原理的分析,认为可以用实测标准电阻率替代数值模拟中均匀半空间电阻率,提出一种新的地形影响快速校正方法,即采用小极矩直流电阻率法获得无地形影响的表层电阻率值,作为地形校正的标准电阻率,以此构造一个新的校正公式.分别对CSAMT和TEM仿真和实际测量资料进行地形校正处理,效果较好.说明新的比值校正公式,是一种快速、有效和实用的校正算法.Abstract: Topography generally affects the electromagnetic data and will mislead the results of shallow layer's resistivity. In this paper, by analyzing the basic law of topography effect and classic ratio correction principle, it is feasible to replace the resistivity of uniform half space from numerical simulation by standard measured resistivity. We proposed a new fast method to correct the topographic effect in electromagnetic data. We obtain the surface resistivity without topography by using a small DC configuration, and then take it as standard resistivity to construct a new correction formula. Both synthetic and field data of CSAMT and TEM were processed using this method. Results show that the new method is a fast, effective and practical tool for topographic correction of electromagnetic data.
-
Key words:
- Electromagnetic method /
- Topographic effect /
- Correction /
- CSAMT /
- TEM
-
-
[1] Chen M S, Yan S. 1995. Problems in Frequency Electromagnetic Soundings (in Chinese). Beijing: Geology Press.
[2] Dong H, Wei W B, Ye G F, et al. 2014. Study of three-dimensional magnetotelluric inversion including surface topography based on finite-difference method. Chinese J. Geophys. (in Chinese), 57(3): 939-952, doi: 10.6038/cjg20140323.
[3] Haber E, Oldenburg D W, Shekhtman R. 2007. Inversion of time domain three-dimensional electromagnetic data. Geophysical Journal International, 171(2): 550-564.
[4] Hördt A, Scholl C. 2004. The effect of local distortions on time-domain electromagnetic measurements. Geophysics, 69(1): 87-96.
[5] Jiracek G R. 1990. Near-surface and topographic distortions in electromagnetic induction. Surveys in Geophysics, 1990, 11(2-3): 163-203.
[6] Lei D. 2010. Studies and applications of 2-D CSAMT modeling and inversion with a dipole source and topography. Chinese J. Geophys. (in Chinese),53(4): 982-993, doi: 10.3969/j.issn.0001-5733.2010.04.023.
[7] Leppin M. 1992. Electromagnetic modeling of 3-D sources over 2-D inhomogeneities in the time domain. Geophysics, 57(8): 994-1003.
[8] Li J M. 2005. Geo-electric Field and Electrical Exploration Methods (in Chinese). Beijing;: Geology Press.
[9] Liu Y. 2012. Two-dimensional numerical modeling for topography Magnetotelluric/time-domain transient electromagnetic and direct inverse method [Ph.D. thesis] (in Chinese)., Chengdu: Chengdu University of Technology.
[10] Sun H F, Li X, Li S C, et al. 2013. Three-dimensional FDTD modeling of TEM excited by a loop source considering ramp time. Chinese J. Geophys. (in Chinese), 56(3): 1049-1064, doi: 10.6038/cjg20130333.
[11] Tang X G, Hu W B, Yan L J. 2011. Topographic effects on long offset transient electromagnetic response. Applied Geophysics, 8(4): 277-284.
[12] Tong L T, Yang C H. 1990. Incorporation of topography into two-dimensional resistivity inversion. Geophysics, 55(3): 354-361.
[13] Wang X B, Li Y N, Gao Y C. 1999. Two dimensional topographic responses in magneto telluric sounding and its correction methods. Computing Techniques for Geophysical and Geochemical Exploration (in Chinese), 21(4): 327-332.
[14] Wannamaker P E, Stodt J A, Rijo L. 1986. Two-dimensional topographic responses in magnetotellurics modeled using finite elements. Geophysics, 51(11): 2131-2144.
[15] Wu X P. 2005. 3-D resistivity inversion under the condition of uneven terrain. Chinese J. Geophys. (in Chinese), 48(4): 932-936.
[16] Xiao H Y. 2006. Three-dimensional numerical modeling considering the topography of TEM [Master thesis] (in Chinese). Beijing: China Universiity of Geosciences (Beijing).
[17] Xu S Z, Zhou H. 1997. Modelling the 2D terrain effect on MT by the boundary-element method. Geophysical Pprospecting, 45(6): 931-943.
[18] Yan S. 2015. One ratio method for correcting the topographic effect in electromagnetric exploration (in Chinese). Chinese Patent, ZL201310039614.6.
[19] Yan S, Chen M S, Li Z M. 1996. Boundary element for method forward solution of two dimensional topography effection electromagnetic frequency sounding. Computing Techniques for Geophysical and Gepochemical Exploration (in Chinese), 22(4): 4533-4842, 47.
[20] Yang D K, Oldenburg D W. 2012. Three-dimensional inversion of airborne time-domain electromagnetic data with applications to a porphyry deposit. Geophysics, 77(2): B23-B34.
[21] Yi M J, Kim J H, Song Y, et al. 2001. Three-dimensional imaging of subsurface structures using resistivity data. Geophysical Prospecting, 49(4): 483-497.
[22] 陈明生, 闫述. 1995. 论频率测深应用中的几个问题. 北京: 地质出版社, 1995.
[23] 董浩, 魏文博, 叶高峰等. 2014. 基于有限差分正演的带地形三维大地电磁反演方法. 地球物理学报, 57(3): 939-952, doi: 10.6038/cjg20140323.
[24] 雷达. 2010. 起伏地形下CSAMT二维正反演研究与应用. 地球物理学报, 53(4): 982-993, doi: 10.3969/j.issn.0001-5733.2010.04.023.
[25] 李金铭. 2005. 地电场与电法勘探. 北京: 地质出版社.
[26] 刘云. 2012. 起伏地形大地电磁、时间域瞬变电磁二维数值模拟及直接反演法[博士论文]. 成都: 成都理工大学.
[27] 孙怀凤, 李貅, 李术才等. 2013. 考虑关断时间的回线源激发TEM三维时域有限差分正演. 地球物理学报, 56(3): 1049-1064, doi: 10.6038/cjg20130333.
[28] 王绪本, 李永年, 高永才. 1999. 大地电磁测深二维地形影响及其校正方法研究. 物探化探计算技术, 21(4).: 327-332.
[29] 吴小平. 2005. 非平坦地形条件下电阻率三维反演. 地球物理学报, 48(4): 932-936.
[30] 肖怀宇. 2006. 带地形的瞬变电磁法三维数值模拟[硕士论文]. 北京: 中国地质大学(北京).
[31] 闫述. 2015. 一种校正电磁勘探中地形影响的比值方法. ZL201310039614.6.
[32] 闫述, 陈明生, 李志民. 1996. 频率测深二维地形影响的边界元素法正演模拟. 物探化探计算技术, 22(4): 4533-4842, 47.
-
计量
- 文章访问数: 1776
- PDF下载数: 2070
- 施引文献: 0

下载: