电磁测深数据地形影响的快速校正

薛国强, 闫述, 陈卫营. 电磁测深数据地形影响的快速校正[J]. 地球物理学报, 2016, 59(12): 4408-4413, doi: 10.6038/cjg20161202
引用本文: 薛国强, 闫述, 陈卫营. 电磁测深数据地形影响的快速校正[J]. 地球物理学报, 2016, 59(12): 4408-4413, doi: 10.6038/cjg20161202
XUE Guo-Qiang, YAN Shu, CHEN Wei-Ying. A fast topographic correction method for electromagnetic data[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(12): 4408-4413, doi: 10.6038/cjg20161202
Citation: XUE Guo-Qiang, YAN Shu, CHEN Wei-Ying. A fast topographic correction method for electromagnetic data[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(12): 4408-4413, doi: 10.6038/cjg20161202

电磁测深数据地形影响的快速校正

详细信息
    作者简介:

    薛国强,男,1966年生,研究员,主要从事瞬变电磁法理论与应用研究.E-mail:ppxueguoqiang@163.com

  • 中图分类号: P631

A fast topographic correction method for electromagnetic data

  • 地形起伏会对电磁法的数据产生一定影响,尤其会影响浅部地层电性结果的准确性.本文通过对地形影响基本规律、经典比值校正原理的分析,认为可以用实测标准电阻率替代数值模拟中均匀半空间电阻率,提出一种新的地形影响快速校正方法,即采用小极矩直流电阻率法获得无地形影响的表层电阻率值,作为地形校正的标准电阻率,以此构造一个新的校正公式.分别对CSAMT和TEM仿真和实际测量资料进行地形校正处理,效果较好.说明新的比值校正公式,是一种快速、有效和实用的校正算法.
  • 加载中
  • [1]

    Chen M S, Yan S. 1995. Problems in Frequency Electromagnetic Soundings (in Chinese). Beijing: Geology Press.

    [2]

    Dong H, Wei W B, Ye G F, et al. 2014. Study of three-dimensional magnetotelluric inversion including surface topography based on finite-difference method. Chinese J. Geophys. (in Chinese), 57(3): 939-952, doi: 10.6038/cjg20140323.

    [3]

    Haber E, Oldenburg D W, Shekhtman R. 2007. Inversion of time domain three-dimensional electromagnetic data. Geophysical Journal International, 171(2): 550-564.

    [4]

    Hördt A, Scholl C. 2004. The effect of local distortions on time-domain electromagnetic measurements. Geophysics, 69(1): 87-96.

    [5]

    Jiracek G R. 1990. Near-surface and topographic distortions in electromagnetic induction. Surveys in Geophysics, 1990, 11(2-3): 163-203.

    [6]

    Lei D. 2010. Studies and applications of 2-D CSAMT modeling and inversion with a dipole source and topography. Chinese J. Geophys. (in Chinese),53(4): 982-993, doi: 10.3969/j.issn.0001-5733.2010.04.023.

    [7]

    Leppin M. 1992. Electromagnetic modeling of 3-D sources over 2-D inhomogeneities in the time domain. Geophysics, 57(8): 994-1003.

    [8]

    Li J M. 2005. Geo-electric Field and Electrical Exploration Methods (in Chinese). Beijing;: Geology Press.

    [9]

    Liu Y. 2012. Two-dimensional numerical modeling for topography Magnetotelluric/time-domain transient electromagnetic and direct inverse method [Ph.D. thesis] (in Chinese)., Chengdu: Chengdu University of Technology.

    [10]

    Sun H F, Li X, Li S C, et al. 2013. Three-dimensional FDTD modeling of TEM excited by a loop source considering ramp time. Chinese J. Geophys. (in Chinese), 56(3): 1049-1064, doi: 10.6038/cjg20130333.

    [11]

    Tang X G, Hu W B, Yan L J. 2011. Topographic effects on long offset transient electromagnetic response. Applied Geophysics, 8(4): 277-284.

    [12]

    Tong L T, Yang C H. 1990. Incorporation of topography into two-dimensional resistivity inversion. Geophysics, 55(3): 354-361.

    [13]

    Wang X B, Li Y N, Gao Y C. 1999. Two dimensional topographic responses in magneto telluric sounding and its correction methods. Computing Techniques for Geophysical and Geochemical Exploration (in Chinese), 21(4): 327-332.

    [14]

    Wannamaker P E, Stodt J A, Rijo L. 1986. Two-dimensional topographic responses in magnetotellurics modeled using finite elements. Geophysics, 51(11): 2131-2144.

    [15]

    Wu X P. 2005. 3-D resistivity inversion under the condition of uneven terrain. Chinese J. Geophys. (in Chinese), 48(4): 932-936.

    [16]

    Xiao H Y. 2006. Three-dimensional numerical modeling considering the topography of TEM [Master thesis] (in Chinese). Beijing: China Universiity of Geosciences (Beijing).

    [17]

    Xu S Z, Zhou H. 1997. Modelling the 2D terrain effect on MT by the boundary-element method. Geophysical Pprospecting, 45(6): 931-943.

    [18]

    Yan S. 2015. One ratio method for correcting the topographic effect in electromagnetric exploration (in Chinese). Chinese Patent, ZL201310039614.6.

    [19]

    Yan S, Chen M S, Li Z M. 1996. Boundary element for method forward solution of two dimensional topography effection electromagnetic frequency sounding. Computing Techniques for Geophysical and Gepochemical Exploration (in Chinese), 22(4): 4533-4842, 47.

    [20]

    Yang D K, Oldenburg D W. 2012. Three-dimensional inversion of airborne time-domain electromagnetic data with applications to a porphyry deposit. Geophysics, 77(2): B23-B34.

    [21]

    Yi M J, Kim J H, Song Y, et al. 2001. Three-dimensional imaging of subsurface structures using resistivity data. Geophysical Prospecting, 49(4): 483-497.

    [22]

    陈明生, 闫述. 1995. 论频率测深应用中的几个问题. 北京: 地质出版社, 1995.

    [23]

    董浩, 魏文博, 叶高峰等. 2014. 基于有限差分正演的带地形三维大地电磁反演方法. 地球物理学报, 57(3): 939-952, doi: 10.6038/cjg20140323.

    [24]

    雷达. 2010. 起伏地形下CSAMT二维正反演研究与应用. 地球物理学报, 53(4): 982-993, doi: 10.3969/j.issn.0001-5733.2010.04.023.

    [25]

    李金铭. 2005. 地电场与电法勘探. 北京: 地质出版社.

    [26]

    刘云. 2012. 起伏地形大地电磁、时间域瞬变电磁二维数值模拟及直接反演法[博士论文]. 成都: 成都理工大学.

    [27]

    孙怀凤, 李貅, 李术才等. 2013. 考虑关断时间的回线源激发TEM三维时域有限差分正演. 地球物理学报, 56(3): 1049-1064, doi: 10.6038/cjg20130333.

    [28]

    王绪本, 李永年, 高永才. 1999. 大地电磁测深二维地形影响及其校正方法研究. 物探化探计算技术, 21(4).: 327-332.

    [29]

    吴小平. 2005. 非平坦地形条件下电阻率三维反演. 地球物理学报, 48(4): 932-936.

    [30]

    肖怀宇. 2006. 带地形的瞬变电磁法三维数值模拟[硕士论文]. 北京: 中国地质大学(北京).

    [31]

    闫述. 2015. 一种校正电磁勘探中地形影响的比值方法. ZL201310039614.6.

    [32]

    闫述, 陈明生, 李志民. 1996. 频率测深二维地形影响的边界元素法正演模拟. 物探化探计算技术, 22(4): 4533-4842, 47.

  • 加载中
计量
  • 文章访问数:  1776
  • PDF下载数:  2070
  • 施引文献:  0
出版历程
收稿日期:  2016-02-04
修回日期:  2016-10-09
上线日期:  2016-12-05

目录