CMIP5多模式集合对东北三省未来气候变化的预估研究

陶纯苇, 姜超, 孙建新. CMIP5多模式集合对东北三省未来气候变化的预估研究[J]. 地球物理学报, 2016, 59(10): 3580-3591, doi: 10.6038/cjg20161006
引用本文: 陶纯苇, 姜超, 孙建新. CMIP5多模式集合对东北三省未来气候变化的预估研究[J]. 地球物理学报, 2016, 59(10): 3580-3591, doi: 10.6038/cjg20161006
TAO Chun-Wei, JIANG Chao, SUN Jian-Xin. Projection of future changes in climate in Northeast China using a CMIP5 multi-model ensemble[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(10): 3580-3591, doi: 10.6038/cjg20161006
Citation: TAO Chun-Wei, JIANG Chao, SUN Jian-Xin. Projection of future changes in climate in Northeast China using a CMIP5 multi-model ensemble[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(10): 3580-3591, doi: 10.6038/cjg20161006

CMIP5多模式集合对东北三省未来气候变化的预估研究

详细信息
    作者简介:

    陶纯苇,女,1990年生,硕士研究生,主要从事全球气候变化生态学方面的研究.E-mail:tcw_peach1020@163.com

    通讯作者: 姜超,女,讲师,主要从事陆地碳循环与全球气候变化的模拟研究.E-mail:jiangchao@bjfu.edu.cn
  • 中图分类号: P461

Projection of future changes in climate in Northeast China using a CMIP5 multi-model ensemble

More Information
  • 应用CN05观测资料,以及参与国际耦合模式比较计划第5阶段(CMIP5)中的26个模式,评估了新一代全球气候模式对东北三省气候变化模拟能力并选出4个较优模式,发现经过筛选得出的较优模式集合平均模拟结果的可靠性得到进一步加强,尤其体现在对气温的模拟上.在此基础上着重分析了多模式集合在不同典型浓度路径(RCPs)下对未来气候变化特征的预估.结果表明:21世纪的未来阶段,东北三省将处于显著增温的状态,且RCP8.5情景下的增温速率(0.53℃/10a)明显高于RCP4.5情景下的速率(0.22℃/10a);空间上,北部地区将成为增温幅度最大、增温速率最高的区域.未来降水将会相对增加,但波动较大,21世纪末期RCP4.5和RCP8.5情景下的降水增加幅度分别为11.24%和15.95%;空间上,辽宁省西部地区将成为降水增加最为显著的区域.根据水分盈亏量,21世纪未来阶段,RCP4.5情景下的东北三省绝大多数地区未来将相对变湿,尤其到了中后期;RCP8.5情景下则是中西部地区将相对变干,其余地区则会相对变湿.
  • 加载中
  • [1]

    Baker N C, Huang H P. 2014. A comparative study of precipitation and evaporation between CMIP3 and CMIP5 climate model ensembles in semiarid regions. Journal of Climate, 27(10):3731-3749, doi:10.1175/JCLI-D-13-00398.1.

    [2]

    Chen H P, Sun J Q. 2009. How the "best" models project the future precipitation change in China. Advances in Atmospheric Sciences, 26(4):773-782, doi:10.1007/s00376-009-8211-7.

    [3]

    Chen H P. 2013. Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models. Chin. Sci. Bull., 58(12):1462-1472, doi:10.1007/s11434-012-5612-2.

    [4]

    Chen W L, Jiang Z H, Li L. 2011. Probabilistic projections of climate change over China under the SRES A1B scenario using 28 AOGCMs. Journal of Climate, 24(17):4741-4756, doi:10.1175/2011JCLI4102.1.

    [5]

    Cui Y, Li Q, Zhou X Y, et al. 2013. Simulation and projection of the surface temperature based on five global climate models over the northeast China. Journal of Meteorology and Environment (in Chinese), 29(4):37-46, doi:10.3969/j.issn.1673-503X.2013.04.006.

    [6]

    Guan G F, Li H, Zheng H, et al. 2015. Research on key technologies of land security of commodity grain base in Northeast China. Territory & Natural Resources Study (in Chinese), (2):37-39.

    [7]

    Guo Y, Dong W J, Ren F M, et al. 2013. Surface air temperature simulations over China with CMIP5 and CMIP3. Advances in Climate Change Research, 4(3):145-152, doi:10.3724/SP.J.1248.2013.145.

    [8]

    Hu B Y, Tang J P, Wang S Y. 2013. Evaluation and projection of extreme events over China under IPCC A1B scenario by MM5V3 model. Chinese J. Geophys. (in Chinese), 56(7):2195-2206, doi:10.6038/cjg20130707.

    [9]

    IPCC. 2013. Climate change 2013:the physical science basis.//Stocker T F, Qin D H, Plattner G K, et al., eds. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA:Cambridge University Press.

    [10]

    Jiang D B, Wang H J, Lang X M. 2005. Evaluation of East Asian climatology as simulated by seven coupled models. Advances in Atmospheric Sciences, 22(4):479-495.

    [11]

    Jiang D B, Tian Z P. 2013. East Asian monsoon change for the 21st century:results of CMIP3 and CMIP5 models. Chinese Science Bulletin, 58(12):1427-1435, doi:10.1007/s11434-012-5533-0.

    [12]

    Liu K, Jiang D B. 2015. Projected changes in the dry/wet climate of China under the RCP4.5 scenario. Chinese Journal of Atmospheric Sciences (in Chinese), 39(3):489-502, doi:10.3878/j.issn.1006-9895.1406.14119.

    [13]

    Otieno V O, Anyah R O. 2013. CMIP5 simulated climate conditions of the Greater Horn of Africa (GHA). Part Ⅱ:projected climate. Climate Dynamics, 41(7-8):2099-2113, doi:10.1007/s00382-013-1694-z.

    [14]

    Shi X H, Xu X D. 2007. Regional characteristics of the interdecadal turning of winter/summer climate modes in Chinese mainland. Chinese Science Bulletin, 52(1):101-112, doi:10.1007/s11434-007-0007-5.

    [15]

    Taylor K E. 2001. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research Atmospheres, 106(D7):7183-7192.

    [16]

    Taylor K E, Stouffer B J, Meehl G A. 2012. An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93(4):485-498, doi:10.1175/BAMS-D-11-00094.1.

    [17]

    Thibeault J M, Seth A. 2014. Changing climate extremes in the Northeast United States:observations and projections from CMIP5. Climatic Change, 127(2):273-287, doi:10.1007/s10584-014-1257-2.

    [18]

    Thornthwaite C W. 1948. An approach toward a rational classification of climate. Geographical Review, 38(1):55-94.

    [19]

    Tian D, Guo Y, Dong W J. 2015. Future changes and uncertainties in temperature and precipitation over China based on CMIP5 models. Advances in Atmospheric Sciences, 32(4):487-496, doi:10.1007/s00376-014-4102-7.

    [20]

    Wang L, Chen W. 2014. A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. International Journal of Climatology, 34(6):2059-2078, doi:10.1002/joc.3822.

    [21]

    Wang L, Chen W, Zhou W. 2014. Assessment of future drought in Southwest China based on CMIP5 multimodel projections. Advances in Atmospheric Sciences, 31(5):1035-1050, doi:10.1007/s00376-014-3223-3.

    [22]

    Wu J, Gao X J. 2013. A gridded daily observation dataset over China region and comparison with the other datasets. Chinese J. Geophys. (in Chinese), 56(4):1102-1111, doi:10.6038/cjg20130406.

    [23]

    Wu J, Zhou B T, Xu Y. 2015. Response of precipitation and its extremes over China to warming:CMIP5 simulation and projection. Chinese J. Geophys. (in Chinese), 58(9):3048-3060, doi:10.6038/cjg20150903.

    [24]

    Xu C H, Xu Y. 2012a. The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble. Atmospheric and Oceanic Science Letters, 5(6):527-533.

    [25]

    Xu Y, Gao X J, Shen Y, et al. 2009. A daily temperature dataset over China and its application in validating a RCM simulation. Advances in Atmospheric Sciences, 26(4):763-772, doi:10.1007/s00376-009-9029-z.

    [26]

    Xu Y, Xu C H. 2012b. Preliminary assessment of simulations of climate changes over China by CMIP5 multi-models. Atmospheric & Oceanic Science Letters, 5(6):489-494.

    [27]

    Yao Y, Luo Y, Huang J B. 2012. Evaluation and projection of temperature extremes over China based on 8 modeling data from CMIP5. Progressus Inquisitiones DE Mutatione Climatis (in Chinese), 8(4):250-256.

    [28]

    Zeng L H, Song K S, Zhang B. 2011. Spatial and temporal structure of water deficit over Northeast China during the period of 1951-2008. Journal of Natural Resources (in Chinese), 26(5):858-870.

    [29]

    Zhang L J. 2014. Research on the efficiency evaluation and subregion optimization of forestry circular economy model in northeast state-owned forestry[Master thesis] (in Chinese). Harbin:Northeast Agricultural University.

    [30]

    Zhao T B, Guo W D, Fu C B. 2008. Calibrating and evaluating reanalysis surface temperature error by topographic correction. Journal of Climate, 21(6):1440-1446, doi:10.1175/2007JCLI1463.1.

    [31]

    Zhao T B, Chen L, Ma Z G. 2014. Simulation of historical and projected climate change in arid and semiarid areas by CMIP5 models. Chin. Sci. Bull., 59(4):412-429, doi:10.1007/s11434-013-0003-x.

    [32]

    Zhou T J, Yu R C. 2006. Twentieth-century surface air temperature over China and the globe simulated by coupled climate models. Journal of Climate, 19(22):5843-5858.

    [33]

    崔妍, 李倩, 周晓宇等. 2013. 5个全球气候模式对中国东北地区地 面温度的模拟与预估. 气象与环境学报, 29(4):37-46, doi:10.3969/j.issn.1673-503X.2013.04.006.

    [34]

    关国锋, 李宏, 郑浩等. 2015. 东北商品粮基地土地保障关键技术研究-技术需求与研究框架. 国土与自然资源研究, (2):37-39.

    [35]

    胡伯彦, 汤剑平, 王淑瑜. 2013. MM5V3模式对IPCC A1B情景下中国地区极端事件的模拟和预估. 地球物理学报, 56(7):2195-2206, doi:10.6038/cjg20130707.

    [36]

    刘珂, 姜大膀. 2015. RCP4.5情景下中国未来干湿变化预估. 大气科学, 39(3):489-502, doi:10.3878/j.issn.1006-9895.1406.14119.

    [37]

    吴佳, 高学杰. 2013. 一套格点化的中国区域逐日观测资料及与其它资料的对比. 地球物理学报, 56(4):1102-1111, doi:10.6038/cjg20130406.

    [38]

    吴佳, 周波涛, 徐影. 2015. 中国平均降水和极端降水对气候变暖的响应:CMIP5模式模拟评估和预估. 地球物理学报, 58(9):3048-3060, doi:10.6038/cjg20150903.

    [39]

    姚遥, 罗勇, 黄建斌. 2012. 8个CMIP5模式对中国极端气温的模拟和预估. 气候变化研究进展, 8(4):250-256.

    [40]

    曾丽红, 宋开山, 张柏. 2011. 1951-2008年东北地区水分盈亏量时空格局. 自然资源学报, 26(5):858-870.

    [41]

    张珑晶. 2014. 东北国有林区林业循环经济模式效率评价与分区优化研究[硕士论文]. 哈尔滨:东北农业大学.[

  • 加载中
计量
  • 文章访问数:  916
  • PDF下载数:  1404
  • 施引文献:  0
出版历程
收稿日期:  2015-11-16
修回日期:  2016-07-20
上线日期:  2016-10-05

目录