基于有效邻域波场近似的起伏地表保幅高斯束偏移

黄建平, 杨继东, 李振春, 李辉峰. 基于有效邻域波场近似的起伏地表保幅高斯束偏移[J]. 地球物理学报, 2016, 59(6): 2245-2256, doi: 10.6038/cjg20160627
引用本文: 黄建平, 杨继东, 李振春, 李辉峰. 基于有效邻域波场近似的起伏地表保幅高斯束偏移[J]. 地球物理学报, 2016, 59(6): 2245-2256, doi: 10.6038/cjg20160627
HUANG Jian-Ping, YANG Ji-Dong, LI Zhen-Chun, LI Hui-Feng. An amplitude-preserved Gaussian beam migration based on wave field approximation in effective vicinity under irregular topographical conditions[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(6): 2245-2256, doi: 10.6038/cjg20160627
Citation: HUANG Jian-Ping, YANG Ji-Dong, LI Zhen-Chun, LI Hui-Feng. An amplitude-preserved Gaussian beam migration based on wave field approximation in effective vicinity under irregular topographical conditions[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(6): 2245-2256, doi: 10.6038/cjg20160627

基于有效邻域波场近似的起伏地表保幅高斯束偏移

详细信息
    作者简介:

    黄建平,男,1982年生,博士,副教授,主要从事地震波正演及偏移成像工作.E-mail:jphuang@mail.ustc.edu.cn

    通讯作者: 杨继东,男,1990年生,在读硕士,主要研究方向为地震波束正演与成像.E-mail:yangjidong_china@163.com
  • 中图分类号: P631

An amplitude-preserved Gaussian beam migration based on wave field approximation in effective vicinity under irregular topographical conditions

More Information
  • 随着我国陆上地震勘探向复杂地表探区的转移,高精度、适应性强的地震成像方法在地震资料的处理、解释及后续属性分析、储层预测中具有重要意义.本文基于有效邻域波场近似理论发展了一种成像精度更高且适用于复杂起伏地表条件的叠前保幅高斯束偏移方法.在传统水平地表高斯束偏移的基础上,本文根据中心射线附近有效邻域内高斯束表征的近似波场,导出了起伏地表条件下具有相对振幅保持的高斯束偏移公式,并给出了一种精度更高的旁轴射线传播角度计算方法.同现有的高斯束偏移方法相比,本文方法不仅考虑了起伏地表对高斯束走时的线性影响,而且首次引入了由地表高程差异和近地表速度变化引起的二次时差校正项和振幅校正项,使得成像结果更加准确可靠.两个典型模型算例验证了本文方法的正确性和有效性.
  • 加载中
  • [1]

    Beasley C, Lynn W. 1992. The zero-velocity layer: Migration from irregular surfaces. Geophysics, 57(11): 1435-1443.

    [2]

    Berryhill J R. 1979. Wave-equation datuming. Geophysics, 44(8): 1329-1344.

    [3]

    ČervenýV, Pšenčík L. 1984. Gaussian beams in elastic 2-D laterally varying layered structures. Geophysical Journal International, 78(1): 65-91.

    [4]

    Claerbout J F. 1991. Theory and Method of Seismic Imaging (in Chinese). Beijing: Petroleum Industry Press.

    [5]

    Gray S H. 1997. Where is the zero-velocity layer? Geophysics, 62(1): 266-269.

    [6]

    Gray S H. 2005. Gaussian beam migration of common-shot records. Geophysics, 70(4): S71-S77.

    [7]

    Gray S H, Bleistein N. 2009. True-amplitude Gaussian-beam migration. Geophysics, 74(2): S11-S23.

    [8]

    Guo C B, Li Z C, Yue Y B. 2011. Gaussian beam migration and its application. Geophysical Prospecting for Petroleum (in Chinese), 50(1): 38-44.

    [9]

    He Y, Wang H Z, Ma Z T, et al. 2002. Pre-stack wave equation depth migration for irregular topography. Progress in Exploration Geophysics (in Chinese), 25(3): 13-19.

    [10]

    Hill N R. 1990. Gaussian beam migration. Geophysics, 55(11): 1416-1428.

    [11]

    Hill N R. 2001. Prestack Gaussian-beam depth migration. Geophysics, 66(4): 1240-1250.

    [12]

    Jia C Z. 2004. The great discovery and future strategy of Chinese petroleum exploration in recent years.//Chinese Petroleum Geological Conference Proceedings (in Chinese). Beijing: Chinese Petroleum Society, Geological Society of China.

    [13]

    Lynn W, MacKay S, Beasley C J. 1993. Efficient migration through complex water-bottom topography. Geophysics, 58(3): 393-398.

    [14]

    MacKay S. 1994. Efficient wavefield extrapolation to irregular surfaces using finite differences: Zero-velocity datuming.//1994 SEG Annual Meeting. Los Angeles, California: Society of Exploration Geophysicists, 1564-1567.

    [15]

    Reshef M. 1991. Depth migration from irregular surfaces with depth extrapolation methods. Geophysics, 56(1): 119-122.

    [16]

    Schneider W A Jr, Phillip L D, Paal E F. 1995. Wave-equation velocity replacement of the low-velocity layer for overthrust-belt data. Geophysics, 60(2): 573-579.

    [17]

    Yilmaz O, Lucas D. 1986. Prestack layer replacement. Geophysics, 51(7): 1355-1369.

    [18]

    Yue Y B, Li Z C, Zhang P, et al. 2010. Prestack Gaussian beam depth migration under complex surface conditions. Applied Geophysics (in Chinese), 7(2): 143-148.

    [19]

    Zhao W Z, Hu S Y, Dong D Z, et al. 2007. Petroleum exploration progresses during the 10th Five-Year Plan and key exploration domains for the future in China. Petroleum Exploration and Development (in Chinese), 34(5): 513-520.

    [20]

    附中文参考文献

    [21]

    克莱鲍特 J F. 1991. 地震成像理论及方法. 北京: 石油工业出版社.

    [22]

    郭朝斌, 李振春, 岳玉波. 2011. 高斯束成像技术及其应用. 石油物探, 50(1): 38-44.

    [23]

    何英, 王华忠, 马在田等. 2002. 复杂地形条件下波动方程叠前深度成像. 勘探地球物理进展, 25(3): 13-19.

    [24]

    贾承造. 2004. 中国石油近年油气重大发现与未来勘探战略.//中国石油地质年会论文集. 北京: 中国石油学会,中国地质学会.

    [25]

    岳玉波, 李振春, 张平等. 2010. 复杂地表条件下高斯波束叠前深度偏移. 应用地球物理, 7(2): 143-148.

    [26]

    赵文智, 胡素云, 董大忠等. 2007. "十五"期间中国油气勘探进展及未来重点勘探领域. 石油勘探与开发, 34(5): 513-520.

  • 加载中
计量
  • 文章访问数:  942
  • PDF下载数:  2266
  • 施引文献:  0
出版历程
收稿日期:  2014-05-15
修回日期:  2016-04-18
上线日期:  2016-06-05

目录