基于GSLS模型TI介质衰减拟声波方程

徐文才, 杨国权, 李振春, 孙小东, 王姣. 基于GSLS模型TI介质衰减拟声波方程[J]. 地球物理学报, 2016, 59(6): 2232-2244, doi: 10.6038/cjg20160626
引用本文: 徐文才, 杨国权, 李振春, 孙小东, 王姣. 基于GSLS模型TI介质衰减拟声波方程[J]. 地球物理学报, 2016, 59(6): 2232-2244, doi: 10.6038/cjg20160626
XU Wen-Cai, YANG Guo-Quan, LI Zhen-Chun, SUN Xiao-Dong, WANG Jiao. Pseudo acoustic equation for TI medium attenuation based on the GSLS model[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(6): 2232-2244, doi: 10.6038/cjg20160626
Citation: XU Wen-Cai, YANG Guo-Quan, LI Zhen-Chun, SUN Xiao-Dong, WANG Jiao. Pseudo acoustic equation for TI medium attenuation based on the GSLS model[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(6): 2232-2244, doi: 10.6038/cjg20160626

基于GSLS模型TI介质衰减拟声波方程

详细信息
    作者简介:

    徐文才,男,1988年生,硕士在读,从事各向异性介质的正演与逆时偏移的研究.E-mail:xuwencai007@163.com

  • 中图分类号: P631

Pseudo acoustic equation for TI medium attenuation based on the GSLS model

  • 随着计算机硬件技术的发展以及高分辨率勘探需求的增加,我们希望能够更准确地模拟地下介质,得到更丰富的地层信息.然而,传统的声学假设并不能描述实际地层所存在各向异性和黏滞性,使得成像分辨率较低.为了实现深部储层的高精度成像,本文同时考虑了介质的各向异性和黏滞性,从TI介质弹性波的基本理论出发,结合各向异性GSLS理论,并通过声学近似方法导出基于GSLS模型的各向异性衰减拟声波方程.数值模拟表明该方程既能准确地描述各向异性介质下的准P波运动学规律,又能体现地层的吸收衰减效应;模型逆时偏移结果表明,在实现成像过程中考虑各向异性和黏滞性的影响,能对高陡构造清晰成像,且剖面振幅相对均衡,分辨率较高.
  • 加载中
  • [1]

    Alkhalifah T. 1998. Acoustic approximations for processing in transversely isotropic media. Geophysics, 63(2): 623-631.

    [2]

    Aki K, Richards P. 1980. Quantitative Seismology. W. H. Freeman and Company.

    [3]

    Carcione J M, Kosloff D, Kosloff R. 1988. Viscoacoustic wave propagation simulation in the earth. Geophysics, 53(6): 769-777.

    [4]

    Carcione J M. 1990. Wave propagating in anisotropic linear viscoelastic media: theory and simulated wavefields. Geophys. J. Int., 101(3): 739-750.

    [5]

    Cheng J B, Kang W. 2012. Propagating pure wave modes in general anisotropic media, Part I: P-wave propagator.//SEG Technical Program Expanded Abstracts. SEG, 1-6.

    [6]

    [LM]Cheng J B, Kang W, Wang T F. 2013. Description of qP-wave propagation in anisotropic media, Part I: Pseudo-pure-mode wave equations. Chinese Journal of Geophysics (in Chinese), 56(10): 3474-3486, doi: 10.6038/cjg20131022.

    [7]

    Cheng J B, Kang W. 2014. Simulating propagation of separated wave modes in general anisotropic media, Part I: qP-wave propagators. Geophysics, 79(1): C1-C18.

    [8]

    Cheng J B, Chen M G, Wang T F, et al. 2014. Description of qP-wave propagation in anisotropic media, Part II: Separation of pure-mode scalar waves. Chinese Journal of Geophysics (in Chinese), 57(10): 3389-3401, doi: 10.6038/cjg20141025.

    [9]

    Chu C L, Macy B K, Anno P D. 2011. An accurate and stable wave equation for pure acoustic TTI modeling.//SEG Technical Program Expanded Abstracts. SEG, 179-184.

    [10]

    Dai N X, West G F. 1994. Inverse Q migration.//SEG Technical Program Expanded Abstracts. SEG, 1418-1421.

    [11]

    Dellinger J, Etgen J. 1990. Wave-field separation in two-dimensional anisotropic media. Geophysics, 55(7): 914-919.

    [12]

    Du X, Fletcher R P, Fowler P J. 2008. A new pseudo-acoustic wave equation for VTI media.//EAGE 70th Conference and Exhibition, Extended Abstracts, H033.

    [13]

    Duveneck E, Bakker P M. 2011. Stable P-wave modeling for reverse-time migration in tilted TI media. Geophysics, 76(2): S65-S75.

    [14]

    Emmerich H, Korn M. 1987. Incorporation of attenuation into time-domain computations of seismic wave fields. Geophysics, 52(9): 1252-1264.

    [15]

    Fletcher R P, Du X, Fowler P J. 2009. Reverse time migration in tilted transversely isotropic (TTI) media. Geophysics, 74(6): WCA179-WCA187.

    [16]

    Fletcher R P, Nichols D, Cavalca M. 2012. Wavepath-consistent effective Q estimation for Q compensated reverse-time migration.//EAGE 74th Conference and Exhibition, Extended Abstracts.

    [17]

    Fowler P J, Du X, Fletcher R P. 2010. Coupled equations for reverse time migration in transversely isotropic media. Geophysics, 75(1): S11-S22.

    [18]

    Liu F, Morton S A, Jiang S, et al. 2009. Decoupled wave equations for P- and SV-waves in an acoustic VTI media.//SEG Technical Program Expanded Abstracts, 2844-2848.

    [19]

    Madja G, Chin R C Y, Followill F E. 1985. A perturbation theory for Love waves in an elastic media. Geophysical Journal of International, 80(1): 1-34.

    [20]

    Pestana R C, Ursin B, Stoffa P L. 2011. Separate P- and SV-wave equations for VTI media.//SEG Technical Program Expanded Abstracts. SEG, 163-167.

    [21]

    Robertsson J O A, Blanch J O, William W S. 1994. Viscoelastic finite-difference modeling. Geophysics, 59(9): 1444-1456.

    [22]

    Suh S, Yoon K, Cai J, et al. 2012. Compensating visco-acoustic effects in anisotropic resverse-time migration.//SEG Technical Program Expanded Abstracts. SEG, 1-5.

    [23]

    Thomsen L. 1986. Weak elastic anisotropy. Geophysics, 51(10): 1954-1966.

    [24]

    Traynin P, Liu J, Reilly J M. 2008. Amplitude and bandwidth recovery beneath gas zones using Kirchhoff prestack depth Q-migration.//SEG Technical Program Expanded Abstracts. SEG, 2412-2416.

    [25]

    Xie Y, Xin K F, Sun J, et al. 2009. 3D prestack depth migration with compensation for frequency dependent absorption and dispersion.//SEG Technical Program Expanded Abstracts. SEG, 2919-2923.

    [26]

    Yan J, Sava P. 2009. Elastic wave-mode separation for VTI media. Geophysics, 74(5): WB19-WB32.

    [27]

    Zhan G, Pestana R C, Stoffa P L. 2012. Decoupled equations for reverse time migration in tilted transversely isotropic media. Geophysics, 77(2): T37-T45.

    [28]

    Zhang Y, Zhang P, Zhang H Z. 2010. Compensating for visco-acoustic effects in reverse-time migration.//SEG Technical Program Expanded Abstracts. SEG, 3160-3164.

    [29]

    Zhang Y, Zhang H Z, Zhang G Q. 2011. A stable TTI reverse time migration and its implementation. Geophysics, 76(3): WA3-WA11.

    [30]

    Zhang Y, Wu G C. 2013. Methods of removing pseudo SV-wave artifacts in TTI media qP-wave reverse-time migration. Chinese Journal of Geophysics (in Chinese), 56(6): 2065-2076, doi: 10.6038/cjg20130627.

    [31]

    Zhou H B, Zhang G Q, Bloor R. 2006. An anisotropic acoustic wave equation for modeling and migration in 2D TTI media.//SEG Technical Program Expanded Abstracts. SEG, 194-198.

    [32]

    附中文参考文献

    [33]

    程玖兵, 康玮, 王腾飞. 2013. 各向异性介质qP波传播描述I: 伪纯模式波动方程. 地球物理学报, 56(10): 3474-3486, doi: 10.6038/cjg20131022.

    [34]

    程玖兵, 陈茂根, 王腾飞等. 2014. 各向异性介质qP波传播描述II: 分离纯模式标量波. 地球物理学报, 57(10): 3389-3401, doi: 10.6038/cjg20141025.

    [35]

    张岩, 吴国忱. 2013. TTI介质qP波逆时偏移中伪横波噪声压制方法. 地球物理学报, 56(6): 2065-2076, doi: 10.6038/cjg20130627.

  • 加载中
计量
  • 文章访问数:  986
  • PDF下载数:  1332
  • 施引文献:  0
出版历程
收稿日期:  2014-12-25
修回日期:  2016-04-13
上线日期:  2016-06-05

目录