华北东部复杂的660 km相变界面

刘震, 田小波, 聂仕潭, 段耀晖, 滕吉文. 华北东部复杂的660 km相变界面[J]. 地球物理学报, 2016, 59(6): 2039-2046, doi: 10.6038/cjg20160610
引用本文: 刘震, 田小波, 聂仕潭, 段耀晖, 滕吉文. 华北东部复杂的660 km相变界面[J]. 地球物理学报, 2016, 59(6): 2039-2046, doi: 10.6038/cjg20160610
LIU Zhen, TIAN Xiao-Bo, NIE Shi-Tan, DUAN Yao-Hui, TENG Ji-Wen. The complex 660 km discontinuity beneath eastern of North China[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(6): 2039-2046, doi: 10.6038/cjg20160610
Citation: LIU Zhen, TIAN Xiao-Bo, NIE Shi-Tan, DUAN Yao-Hui, TENG Ji-Wen. The complex 660 km discontinuity beneath eastern of North China[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(6): 2039-2046, doi: 10.6038/cjg20160610

华北东部复杂的660 km相变界面

详细信息
    作者简介:

    刘震,男,1985年生,中国科学院地质与地球物理研究所博士研究生,主要从事地球壳幔结构方面的研究.E-mail:liuzhen@mail.iggcas.ac.cn

  • 中图分类号: P315

The complex 660 km discontinuity beneath eastern of North China

  • 利用华北固定台网的宽频带地震远震记录波形资料,提取P波接收函数,通过偏移成像和共转换点叠加,得到华北地区东部地幔过渡带深度及厚度的图像.研究结果显示,地幔过渡带上界面(410 km间断面)深度起伏变化不大;在华北地区东部,存在较厚的地幔过渡带,地幔过渡带下界面(660 km间断面)在660 km深度附近出现两个不同的界面.造成地幔过渡带增厚并出现两个深度不同的界面的原因可能是存在橄榄岩以外的地幔物质相变,该物质相变拥有与橄榄岩向钙钛矿转变不同的克拉伯龙斜率,太平洋俯冲板块的低温造成两种不同的相变界面发生不同程度的改变.双重660 km间断面的范围存在向北西方向延伸的趋势并且向南至少延伸到30°N.本文的结果可为古西太平洋板块向华北俯冲前缘位置的研究提供约束.
  • 加载中
  • [1]

    Ai Y S, Zheng T Y. 2003. The upper mantle discontinuity structure beneath eastern China. Geophysical Research Letters, 30(21): 2089.

    [2]

    Anderson D L. 1989. Theory of the Earth. Boston: Blackwell Scientific Publication, 366.

    [3]

    Bina C R, Helffrich G. 1994. Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. Journal of Geophysical Research, 99(B8): 15853-15860.

    [4]

    Birch F. 1952. Elasticity and constitution of the Earth's interior. Journal of Geophysical Research, 57(2): 227-286.

    [5]

    Chang L J, Wang C Y, Ding Z F. 2009. Seismic anisotropy of upper mantle in eastern China. Science in China Series D: Earth Sciences, 52(6): 774-783.

    [6]

    Chen L, Ai Y S. 2009. Discontinuity structure of the mantle transition zone beneath the North China Craton from receiver function migration. Journal of Geophysical Research, 114(B6): B06307.

    [7]

    Chen L. 2010. Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications. Lithos, 120(1-2): 96-115.

    [8]

    Fukao Y, Widiyantoro S, Obayashi M. 2001. Stagnant slabs in the upper and lower mantle transition region. Reviews of Geophysics, 39(3): 291-323.

    [9]

    Gao Y, Suetsugu D, Fukao Y, et al. 2010. Seismic discontinuities in the mantle transition zone and at the top of the lower mantle beneath eastern China and Korea: Influence of the stagnant Pacific slab. Physics of the Earth and Planetary Interiors, 183(1-2): 288-295.

    [10]

    Guo Z, Tang Y C, Chen J, et al. 2012. A study on crustal and upper mantle structures in east part of North China Craton using receiver functions. Chinese Journal of Geophysics (in Chinese), 55(11): 3591-3600, doi: 10.6038/j.issn.0001-5733.2012.11.008.

    [11]

    Helffrich G. 2000. Topography of the transition zone seismic discontinuities. Reviews of Geophysics, 38(1): 141-158.

    [12]

    Hu J F, Su Y J, Zhu X G, et al. 2005. S-wave velocity and poisson's ratio structure of the crust in Yunnan and its implication. Science in China Series D: Earth Sciences, 48(2): 210-218.

    [13]

    Huang J L, Zhao D P. 2006. High-resolution mantle tomography of China and surrounding regions. Journal of Geophysical Research, 111(B9): B09305.

    [14]

    Huang Z C, Zhao D P, Hasegawa A, et al. 2013. Aseismic deep subduction of the Philippine Sea plate and slab window. Journal of Asian Earth Sciences, 75: 82-94.

    [15]

    Ito E, Takahashi E. 1989. Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. Journal of Geophysical Research, 94(B8): 10637-10646.

    [16]

    Katsura T, Ito E. 1989. The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel, and spinel. Journal of Geophysical Research, 94(B11): 15663-15670.

    [17]

    Kennett B L N, Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2): 429-465.

    [18]

    Koppers A A P, Morgan J P, Morgan J W, et al. 2001. Testing the fixed hotspot hypothesis using 40Ar/39Ar age progressions along seamount trails. Earth and Planetary Science Letters, 185(3-4): 237-252.

    [19]

    Koppers A A P, Staudigel H, Duncan R A. 2003. High-resolution 40Ar/39Ar dating of the oldest oceanic basement basalts in the western Pacific Basin. Geochemistry, Geophysics, Geosystems, 4(11): 8914.

    [20]

    Li C, Van Der Hilst R D. 2010. Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography. Journal of Geophysical Research, 115(B7): B07308.

    [21]

    Liu Q Y, Li S C, Shen C, et al. 1997. Broadband seismic array study of the crust and upper mantle velocity structure beneath Yanhuai basin and its neighbouring region. Acta Geophysica Sinica (in Chinese), 40(6): 763-772.

    [22]

    Niu S Y, Hu H B, Mao W J, et al. 2004. Structure in western Shandong and its genetic mechanism. Geology in China (in Chinese), 31(1): 34-39.

    [23]

    Qiu R Z, Deng J F, Zhou S, et al. 2005. Lithosphere types in North China: Evidence from geology and geophysics. Science in China Series D: Earth Sciences, 48(11): 1809-1827.

    [24]

    Ringwood A E. 1975. Composition and Petrology of the Earth's Mantle. New York: McGraw-Hill, 618.

    [25]

    Saul J, Kumar M R, Sarkar D. 2000. Lithospheric and upper mantle structure of the Indian Shield, from teleseismic receiver functions. Geophysical Research Letters, 27(16): 2357-2360.

    [26]

    Schimmel M, Paulssen H. 1997. Noise reduction and detection of weak, coherent signals through phase-weighted stacks. Geophysical Journal International, 130(2): 497-505.

    [27]

    Si S K, Tian X B, Zhang H S, et al. 2013. Prevalent thickening and local thinning of the mantle transition zone beneath the Baikal rift zone and its dynamic implications. Science China: Earth Sciences, 56(1): 31-42.

    [28]

    Si S K, Tian X B, Zhang H S, et al. 2014. Multiple sinusoidal tapers method to estimate receiver function. Chinese Journal of Geophysics (in Chinese), 57(3): 789-799, doi: 10.6038/cjg20140309.

    [29]

    Song M C, Li H K. 2001. Study on regional geological structural evolution in Shandong Province. Geology of Shandong (in Chinese), 17(6): 12-21, 38.

    [30]

    Stixrude L. 1997. Structure and sharpness of phase transitions and mantle discontinuities. Journal of Geophysical Research, 102(B7): 14835-14852.

    [31]

    Tian X B, Zhao D P, Zhang H S, et al. 2010. Mantle transition zone topography and structure beneath the central Tien Shan orogenic belt. Journal of Geophysical Research: Solid Earth, 115(B10): B10308.

    [32]

    Tian X B, Teng J W, Zhang H S, et al. 2011. Structure of crust and upper mantle beneath the Ordos Block and the Yinshan Mountains revealed by receiver function analysis. Physics of the Earth and Planetary Interiors, 184(3-4): 186-193.

    [33]

    Tian X B, Santosh M. 2015. Fossilized lithospheric deformation revealed by teleseismic shear wave splitting in eastern China. GSA Today, 25(2): 4-10.

    [34]

    Vacher P, Mocquet A, Sotin C. 1998. Computation of seismic profiles from mineral physics: The importance of the non-olivine components for explaining the 660 km depth discontinuity. Physics of the Earth and Planetary Interiors, 106(3-4): 275-298.

    [35]

    Wu F Y, Yang J H, Wilde S A, et al. 2005. Geochronology, petrogenesis and tectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. Chemical Geology, 221(1-2): 127-156.

    [36]

    Wu Q J, Zeng R S. 1998. The crustal structure of Qinghai-Xizang Plateau inferred from broadband teleseismic waveform. Acta Geophysica Sinica (in Chinese), 41(5): 669-679.

    [37]

    Xu W W, Zheng T Y, Zhao L. 2011. Mantle dynamics of the reactivating North China Craton: Constraints from the topographies of the 410 km and 660 km discontinuities. Science China: Earth Sciences, 54(6): 881-887.

    [38]

    Xu Y G, Chuang S L, Ma J L, et al. 2004. Contrasting Cenozoic lithospheric evolution and architecture in the western and eastern Sino-Korean craton: Constraints from geochemistry of basalts and mantle xenoliths. The Journal of Geology, 112(5): 593-605.

    [39]

    Zang S X, Ning J Y. 1996. Study on the subduction zone in western pacific and its implication for the geodynamics. Acta Geophysica Sinica (in Chinese), 39(2): 188-202.

    [40]

    Zhao D P, Ohtani E. 2009. Deep slab subduction and dehydration and their geodynamic consequences: Evidence from seismology and mineral physics. Gondwana Research, 16(3-4): 401-413.

    [41]

    Zhao L, Zheng T Y, 2005. Using shear wave splitting measurements to investigate the upper mantle anisotropy beneath the North China Craton: distinct variation from east to west. Geophysical Research Letters, 32(10): L10309.

    [42]

    Zhao L, Zheng T Y, Chen L, et al. 2007. Shear wave splitting in eastern and central China: implications for upper mantle deformation beneath continental margin. Physics of the Earth and Planetary Interiors, 162(1-2): 73-84.

    [43]

    Zhu R X, Chen L, Wu F Y, et al. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Science China: Earth Sciences, 54(6): 789-797.

    [44]

    Zhu R X, Xu Y G, Zhu G, et al. 2012. Destruction of the North China Craton. Science China: Earth Sciences, 55(10): 1565-1587.

    [45]

    附中文参考文献

    [46]

    常利军, 王椿镛, 丁志峰. 2009. 中国东部上地幔各向异性研究. 中国科学D辑: 地球科学, 39(9): 1169-1178.

    [47]

    郭震, 唐有彩, 陈永顺等. 2012. 华北克拉通东部地壳和上地幔结构的接收函数研究. 地球物理学报, 55(11): 3591-3600, doi: 10.6038/j.issn.0001-5733.2012.11.008.

    [48]

    胡家富, 苏有锦, 朱雄关等. 2003. 云南的地壳S波速度与泊松比结构及其意义. 中国科学D 辑: 地球科学, 33(8): 714-722.

    [49]

    刘启元, 李顺成, 沈杨, 等. 1997. 延怀盆地及其邻区地壳上地幔速度结构的宽频带地震台阵研究. 地球物理学报, 40(6): 763-772.

    [50]

    牛树银, 胡华斌, 毛景文等. 2004. 鲁西地区地质构造特征及其形成机制. 中国地质, 31(1): 34-39.

    [51]

    邱瑞照, 邓晋福, 周肃等. 2004. 华北地区岩石圈类型: 地质与地球物理证据. 中国科学D辑 地球科学, 34(8): 698-711.

    [52]

    司少坤, 田小波, 张洪双等. 2012. 贝加尔裂谷区地幔过渡带大范围增厚与局部减薄现象及其动力学意义. 中国科学: 地球科学, 42(11): 1647-1659.

    [53]

    司少坤, 田小波, 张洪双等. 2014. 接收函数提取的多正弦窗方法. 地球物理学报, 57(3): 789-799, doi: 10.6038/cjg20140309.

    [54]

    宋明春, 李洪奎. 2001. 山东省区域地质构造演化探讨. 山东地质, 17(6): 12-21, 38.

    [55]

    吴庆举, 曾融生. 1998. 用宽频带远震接收函数研究青藏高原的地壳结构. 地球物理学报, 41(5): 669-679.

    [56]

    许卫卫, 郑天愉, 赵亮. 2011. 华北地区410 km间断面和660 km间断面结构-克拉通活化的地幔动力学状态探测. 中国科学: 地球科学, 41(5): 678-685.

    [57]

    臧绍先, 宁杰远. 1996. 西太平洋俯冲带的研究及其动力学意义. 地球物理学报, 39(2): 188-202.

    [58]

    朱日祥, 陈凌, 吴福元等. 2011. 华北克拉通破坏的时间、范围与机制. 中国科学: 地球科学, 41(5): 583-592.

    [59]

    朱日祥, 徐义刚, 朱光等. 2012. 华北克拉通破坏. 中国科学: 地球科学, 42(8): 1135-1159.

  • 加载中
计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2015-08-18
修回日期:  2016-03-19
上线日期:  2016-06-05

目录