裂缝诱导双相HTI介质地震波场错格伪谱法模拟与波场特征分析

刘财, 迟唤昭, 高炜, 鹿琪, 兰慧田. 裂缝诱导双相HTI介质地震波场错格伪谱法模拟与波场特征分析[J]. 地球物理学报, 2016, 59(5): 1776-1789, doi: 10.6038/cjg20160521
引用本文: 刘财, 迟唤昭, 高炜, 鹿琪, 兰慧田. 裂缝诱导双相HTI介质地震波场错格伪谱法模拟与波场特征分析[J]. 地球物理学报, 2016, 59(5): 1776-1789, doi: 10.6038/cjg20160521
LIU Cai, CHI Huan-Zhao, GAO Wei, LU Qi, LAN Hui-Tian. Seismic wavefield simulation and feature analysis for a fracture-induced two-phase HTI medium based on the staggered-grid pseudo-spectral method[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(5): 1776-1789, doi: 10.6038/cjg20160521
Citation: LIU Cai, CHI Huan-Zhao, GAO Wei, LU Qi, LAN Hui-Tian. Seismic wavefield simulation and feature analysis for a fracture-induced two-phase HTI medium based on the staggered-grid pseudo-spectral method[J]. Chinese Journal of Geophysics (in Chinese), 2016, 59(5): 1776-1789, doi: 10.6038/cjg20160521

裂缝诱导双相HTI介质地震波场错格伪谱法模拟与波场特征分析

详细信息
    作者简介:

    刘财,男,1963年生,教授,博士生导师,主要从事地震波场正反演理论、综合地球物理等研究.E-mail:liucai@jlu.edu.cn

    通讯作者: 鹿琪,女,1972年生,博士,教授,主要从事探地雷达和地震数据处理研究.E-mail:luqi@jlu.edu.cn
  • 中图分类号: P631

Seismic wavefield simulation and feature analysis for a fracture-induced two-phase HTI medium based on the staggered-grid pseudo-spectral method

More Information
  • 裂缝诱导的双相具有水平对称轴的横向各向同性(HTI)介质模型是由一组平行排列的垂直裂缝嵌入到统计各向同性的流体饱和多孔隙岩石中而组成的,它综合考虑了裂缝型储层岩石的各向异性和孔隙性.高精度的地震波场数值模拟技术是研究该介质中地震波传播规律的主要方法.本文结合错格伪谱法和时间分裂法,求解描述该介质中地震波传播的一阶速度-应力方程.模拟了单层和双层模型中的地震波场,并对其进行了特征分析.研究结果表明:错格伪谱法能有效消除标准网格伪谱法波场模拟结果中出现的数值伪影现象,与时间分裂法结合能够获得稳定的、高精度的模拟结果;裂缝诱导双相HTI介质中的地震波场兼具裂缝各向异性介质和双相介质中传播的地震波的波场特征.
  • 加载中
  • [1]

    Ba J, Lu M H, Hu B, et al. 2008. The skeleton-relaxed model for poroviscoelastic media. Chinese J. Geophys. (in Chinese), 51(5): 1527-1537, doi: 10.3321/j.issn:0001-5733.2008.05.027.

    [2]

    Ba J, Nie J X, Cao H, et al. 2008. Mesoscopic fluid flow simulation in double-porosity rocks. Geophysical Research Letters, 35(4): L04303.

    [3]

    Ba J, Cao H, Yao F C, et al. 2010. Application of staggerred pseudospectrum method in simulating seismic wave field of reef beach facies reservoirs. OGP (in Chinese), 45(2): 177-184.

    [4]

    Batzle M L, Han D H, Hofmann R. 2006. Fluid mobility and frequency-dependent seismic velocity-Direct measurements. Geophysics, 71(1): N1-N9.

    [5]

    Carcione J M, Quiroga-Goode G. 1995. Some aspects of the physics and numerical modeling of Biot compressional waves. Journal of Computational Acoustics, 3(34): 261-280.

    [6]

    Carcione J M, Helle H B. 1999. Numerical solution of the poroviscoelastic wave equation on a staggered mesh. J. Comput. Phys., 154(2): 520-527.

    [7]

    Carcione J M. 1999. Staggered mesh for the anisotropic and viscoelastic wave equation. Geophysics, 64(6): 1863-1866.

    [8]

    Carcione, J M., Gurevich, B., 2011. Differential form and numerical implementation of Biot's poroelasticity equations with squirt dissipation. Geophysics, 76(6),: N55-N64.

    [9]

    Cerjan C, Kosloff D, Kosloff R, et al. 1985. A nonreflecting boundary condition for discrete acoustic and elastic wave equation. Geophysics, 50(4): 705-708.

    [10]

    Chapman M. 2003. Frequency-dependent anisotropy due to meso-scale fractures in the presence of equant porosity. Geophysical Prospecting, 51(5): 369-379.

    [11]

    Chen H W. 1996. Staggered-grid pseudospectral viscoacoustic wave field simulation in two-dimensional media. J. Acoust. Soc. Am., 100(1): 120-131.

    [12]

    Du Q Z, Kong L Y, Han S C. 2009. Wavefield propagation characteristics in the fracture-induced anisotropic double-porosity medium. Chinese J. Geophys. (in Chinese), 52(4): 1049-1058, doi: 10.3969/j.issn.0001-5733.2009.04.022.

    [13]

    Du Q Z, Wang X M, Ba J, et al. 2012. An equivalent medium model for wave simulation in fractured porous rocks. Geophysical Prospecting, 60(5): 940-956.

    [14]

    Du Z L, Xu F, Gao H L. 2010. Pseudo spectral seismic wavefield simulation with staggered grid. GPP (in Chinese), 49(5): 430-437.

    [15]

    Dvorkin J, Nur A. 1993. Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms. Geophysics, 58(4): 524-533.

    [16]

    Gao W, Liu C, Guo Z Q, et al. 2014. Fracture-induced two-phase HTI medium model and its elastic wave propagation equations. Global Geology (in Chinese), 33(4): 904-909.

    [17]

    Guo Z Q, Liu C, Yang B J, et al. 2007. Seismic wave fields modeling and feature in viscoelastic anisotropic media. Progress in Geophysics (in Chinese), 22(3): 804-810.

    [18]

    Gurevich B. 2003. Elastic properties of saturated porous rocks with aligned fractures. Journal of Applied Geophysics, 54(3-4): 203-218.

    [19]

    Gurevich B, Brajanovski R, Galvin R J, et al. 2009. P-wave dispersion and attenuation in fractured and porous reservoirs—poroelasticity approach. Geophysical Prospecting, 57(2): 225-237.

    [20]

    Hudson J A. 1981. Wave speeds and attenuation of elastic waves in material containing cracks. Geophysical Journal of the Royal Astronomical SocietyInternational, 64(1): 133-150.

    [21]

    Hudson J A, Liu E, Crampin S. 1996. The mechanical properties of materials with interconnected cracks and pores. Geophysical Journal International, 124(1): 105-112.

    [22]

    Hudson J A, Pointer T, Liu E. 2001. Effective-medium theories for fluid-saturated materials with aligned cracks. Geophysical Prospecting, 49(5): 509-522.

    [23]

    Jakobsen M, Johansen T A, McCann C. 2003. The acoustic signature of fluid flow in complex porous media. Journal of Applied Geophysics, 54(3-4): 219-246.

    [24]

    Kong L Y, Wang Y B, Yang H Z. 2012. Fracture parameters analyses in fracture-induced HTI double-porosity medium. Chinese J. Geophys. (in Chinese), 55(1): 189-196, doi: 10.6038/j.issn.0001-5733.2012.01.018.

    [25]

    Li H X, Tao C H. 2009. Features analysis of seismic wave field in two-phase anisotropic random medium with the pseudo-spectral method. Acta Physica Sinica (in Chinese), 58(4): 2836-2842.

    [26]

    Liu C, Guo Z Q, Yang B J, et al. 2007. Analysis of reflection and transmission problems of waves in viscoelastic anisotropic media. Chinese J. Geophys. (in Chinese), 50(4): 1216-1224.

    [27]

    Liu C, Lan H T, Guo Z Q, et al. 2013. Pseudo-spectral modeling and feature analysis of wave propagation in two-phase HTI medium based on reformulated BISQ mechanism. Chinese J. Geophys. (in Chinese), 56(10): 3461-3473, doi: 10.6038/cjg20131021.

    [28]

    Liu J, Ma J W, Yang H Z, et al. 2008. Staggered-grid pseudo-spectrum simulation of fracture and cave reservoir. OGP (in Chinese), 43(6): 723-727.

    [29]

    Liu J, Ba J, Ma J W, et al. 2010. An analysis of seismic attenuation in random porous media. Science. China Ser G-Phys. Mech. Astron., 53(4): 628-637.

    [30]

    Liu Y, Li C C. 2000. The study on elastic wave propagation with the pseudo-spectral method in two-phase anisotropic medium. Acta Seismologica Sinica (in Chinese), 22(2): 132-138.

    [31]

    Özdenvar T, McMechan G A. 1996. Causes and reduction of numerical arteifacts in pseudo-spectral wavefield extrapolation. Geophy. J. Int., 126(3): 819-828.

    [32]

    Özdenvar T, McMechan G A. 1997. Algorithms for staggered-grid computations for poroelastic, elastic, acoustic, and scalar wave equations. Geophysical Prospecting, 45(3): 403-420.

    [33]

    Parra J O. 2000. Poroelastic model to relate seismic wave attenuation and dispersion to permeability anisotropy. Geophysics, 65(1): 202-210.

    [34]

    Schoenberg M, Sayers C M. 1995. Seismic anisotropy of fractured rock. Geophysics, 60(1): 204-211.

    [35]

    Shan Q T, Yue Y X. 2007. Wavefield simulation of 2-D viscoelastic medium in Perfectly Matched Layer boundary. GPP (in Chinese), 46(2): 126-130.

    [36]

    Sil S, Sen M K, Gurevich B. 2011. Analysis of fluid substitution in a porous and fractured medium. Geophysics, 76(3): WA157-WA166.

    [37]

    Tang J, Fang B, Sun C Y, et al. 2015. Study of seismic wave propagation characteristics based on anisotropic fluid substitution in fractured medium. Geophysical Prospecting for Petroleum (in Chinese), 54(1): 1-8.

    [38]

    Thomsen L. 1995. Elastic anisotropy due to aligned cracks in porous rock. Geophysical Prospecting, 43(6): 805-829.

    [39]

    Witte D, Richards P G. 1987. Contribution to the pseudo-spectral method for computing synthetic seismograms.//Expanded Abstracts of 57th SEG Annual Int. Mtg., 517-519.

    [40]

    Wu B N, Wu S Q, Huang Y, et al. 2012. Application of staggered grids in elastic wavefield modeling by pseudo-spectral method. GPP (in Chinese), 51(5): 440-445.

    [41]

    Xuan Y H, He J D, Meng Q S, et al. 2006. Wavefield analysis of biphase EDA medium based on BISQ mechanism. OGP (in Chinese), 41(5): 550-556.

    [42]

    Zhang J D, Yue Y X, Wang Y X. 2008. Numerical simulation wave field by pseudo-spectrum method in isotropic two-phase media. GPP (in Chinese), 47(4): 338-345.

    [43]

    Zhang X W, Wang D L, Wang Z J, et al. 2010. The study on azimuth echaraecterlistiecs of attenuation and dispersion in 3D two-phase orthotropic crack medium based on BISQ mechanism. Chinese J. Geophys. (in Chinese), 53(10): 2452-2459, doi: 10.3969/j.issn.0001-5733.2010.10.019.

  • 加载中
计量
  • 文章访问数:  933
  • PDF下载数:  2207
  • 施引文献:  0
出版历程
收稿日期:  2015-05-14
修回日期:  2016-03-02
上线日期:  2016-05-05

目录