长江中下游成矿带及邻区地壳剪切波速度结构和径向各向异性

欧阳龙斌, 李红谊, 吕庆田, 李信富, 江国明, 张贵宾, 史大年, 郑丹, 张冰, 李佳鹏. 长江中下游成矿带及邻区地壳剪切波速度结构和径向各向异性[J]. 地球物理学报, 2015, 58(12): 4388-4402, doi: 10.6038/cjg20151205
引用本文: 欧阳龙斌, 李红谊, 吕庆田, 李信富, 江国明, 张贵宾, 史大年, 郑丹, 张冰, 李佳鹏. 长江中下游成矿带及邻区地壳剪切波速度结构和径向各向异性[J]. 地球物理学报, 2015, 58(12): 4388-4402, doi: 10.6038/cjg20151205
OUYANG Long-Bin, LI Hong-Yi, LV Qing-Tian, LI Xin-Fu, JIANG Guo-Ming, ZHANG Gui-Bin, SHI Da-Nian, ZHENG Dan, ZHANG Bing, LI Jia-Peng. Crustal shear wave velocity structure and radial anisotropy beneath the Middle-Lower Yangtze River metallogenic belt and surrounding areas from seismic ambient noise tomography[J]. Chinese Journal of Geophysics (in Chinese), 2015, 58(12): 4388-4402, doi: 10.6038/cjg20151205
Citation: OUYANG Long-Bin, LI Hong-Yi, LV Qing-Tian, LI Xin-Fu, JIANG Guo-Ming, ZHANG Gui-Bin, SHI Da-Nian, ZHENG Dan, ZHANG Bing, LI Jia-Peng. Crustal shear wave velocity structure and radial anisotropy beneath the Middle-Lower Yangtze River metallogenic belt and surrounding areas from seismic ambient noise tomography[J]. Chinese Journal of Geophysics (in Chinese), 2015, 58(12): 4388-4402, doi: 10.6038/cjg20151205

长江中下游成矿带及邻区地壳剪切波速度结构和径向各向异性

详细信息
    作者简介:

    欧阳龙斌,男,1989年生,硕士研究生,主要从事背景噪声和远震面波层析成像研究.E-mail:ouyang10108326@126.com

    通讯作者: 李红谊,教授,主要从事地震波传播和地球内部结构研究.E-mail:lih@cugb.edu.cn
  • 中图分类号: P315

Crustal shear wave velocity structure and radial anisotropy beneath the Middle-Lower Yangtze River metallogenic belt and surrounding areas from seismic ambient noise tomography

More Information
  • 收集了安徽、江西、浙江、江苏、湖北和河南6个省的区域地震台网138个宽频地震台站以及中国地质大学(北京)在长江中下游成矿带布设的19个流动宽频地震台站的三分量背景噪声数据,利用背景噪声面波层析成像方法,获得了长江中下游成矿带及其邻区地壳三维剪切波速度结构和径向各向异性特征.首先获得了5~38 s周期的瑞利波和勒夫波相速度,结果显示短周期( < 16 s)的瑞利波和勒夫波相速度与研究区内的主要地质构造单元具有良好的相关性,但在中长周期(20~30 s)瑞利波相速度显示大别造山带东部为明显低速特征,而勒夫波相速度并未表现出异常特征.研究区域地壳三维有效剪切波速度和径向各向异性结果显示:苏北盆地和江汉盆地上地壳都表现为低速和正径向各向异性特征,华北克拉通东南部也表现为正径向各向异性,这可能与盆地浅部沉积层的水平层理结构相关.大别造山带中地壳显示为弱的正径向各向异性,同时其东部下地壳显示为低剪切波速度和强的正径向各向特征,可能是由于其在造山后发生了中下地壳的流变变形,引起各向异性矿物近水平排列所导致的.长江中下游成矿带内的鄂东南和安庆—贵池矿集区中地壳弱的负径向各向异性可能是由于深部岩浆向上渗透时所产生的有限应力导致结晶各向异性矿物的垂直排列所引起的.整个长江中下游成矿带下地壳都表现出正径向各向异性特征,可能是由于在伸展拉张的构造作用力下,下地壳矿物的晶格优势水平排列所引起的.
  • 加载中
  • [1]

    Anderson D L. 1961. Elastic wave propagation in layered anisotropic media. J. Geophys. Res., 66(9): 2953-2963.

    [2]

    Bensen G D, Ritzwoller M H, Barmin M P, et al. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3): 1239-1260, doi: 10.1111/j.1365-246X.2007.03374.x.

    [3]

    Chang Y F, Liu X P, Wu Y C. 1991. The Copper-Iron Belt of the Lower and Middle Reaches of the Changjiang River (in Chinese). Beijing: Geol. Pub. House, 1-239.

    [4]

    Cheng C, Chen L, Yao H J, et al. 2013. Distinct variations of crustal shear wave velocity structure and radial anisotropy beneath the North China Craton and tectonic implications. Gondwana Research, 23(1): 25-38.

    [5]

    Clark M K, Royden L H. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8): 703-706.

    [6]

    Constable S C, Parker R L, Constable C G. 1987. Occam's inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52(3): 289-300.

    [7]

    Dong S W, Ma L C, Liu G, et al. 2011. On dynamics of the metallogenic belt of middle-lower reaches of Yangtze River, Eastern China. Acta Geologica Sinica (in Chinese), 85(5): 612-625.

    [8]

    Eide E A, Liou J G. 2000. High-pressure blueschists and eclogites in Hong'an: a framework for addressing the evolution of high- and ultrahigh-pressure rocks in central China. Lithos, 52(1-4): 1-22, doi: 10.1016/S0024-4937(99)00081-X.

    [9]

    Faure M, Lin W, Schärer U, et al. 2003. Continental subduction and exhumation of UHP rocks. Structural and geochronological insights from the Dabieshan (East China). Lithos, 70(3-4): 213-241.

    [10]

    Guo B, Liu Q Y, Chen J H, et al. 2012. P-wave anisotropy of upper-mantle beneath China mainland and adjacent areas. Chinese J. Geophys. (in Chinese), 55(12): 4106-4115, doi: 10.6038/j.issn.0001-5733.2012.12.023.

    [11]

    Hacker B R, Ritzwoller M H, Xie J. 2014. Partially melted, mica-bearing crust in Central Tibet. Tectonics, 33(7): 1408-1424.

    [12]

    Herrmann R B, Ammon C J. 2004. Surface waves, receiver functions and crustal structure. Computer Programs in Seismology, Version 3.30 [Electronic]. Saint Louis Univ, St. Louis, Mo. Available at http://www.eas.slu.edu/People/RBHerrmann/CPS330.html.

    [13]

    Hou Z Q, Pan X F, Yang Z M, et al. 2007. Porphyry Cu-(Mo-Au) deposits no related to oceanic-slab subduction: examples from Chinese porphyry deposits in continental settings. Geoscience, 21(2): 332-351.

    [14]

    Huang H, Yao H J, van der Hilst R D. 2010. Radial anisotropy in the crust of SE Tibet and SW China from ambient noise interferometry. Geophysical Research Letters, 37(21).

    [15]

    Huang Z X, Su W, Peng Y J, et al. 2003. Rayleigh wave tomography of China and adjacent regions. J. Geophys. Res., 108(B2): 2073, doi: 10.1029/2001JB001696.

    [16]

    Jiang G M, Zhang G B, Lü Q T, et al. 2013. 3-D velocity model beneath the Middle-Lower Yangtze River and its implication to the deep geodynamics. Tectonophysics, 606: 36-47.

    [17]

    Kennett B L N, Engdahl E R, Buland R. 1995. Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 122(1): 108-124.

    [18]

    Li H Y, Su W, Wang C Y, et al. 2009. Ambient noise Rayleigh wave tomography in western Sichuan and eastern Tibet. Earth and Planetary Science Letters, 282(1-4): 201-211.

    [19]

    Li H Y, Li S T, Song X D, et al. 2012. Crustal and uppermost mantle velocity structure beneath northwestern China from seismic ambient noise tomography. Geophys. J. Int., 188(1): 131-143 doi: 10.1111/j.1365-246X.2011.05205.x.

    [20]

    Li X H, Li Z X, Li W X, et al. 2013. Revisiting the "C-type adakites" of the Lower Yangtze River Belt, central eastern China: In-situ zircon Hf-O isotope and geochemical constraints. Chemical Geology, 345: 1-15.

    [21]

    Li Y H, Wu Q J, Zhang R Q, et al. 2009. The lithospheric S-velocity structure of the western Yangtze craton inferred from surface waves inversion. Chinese J. Geophys. (in Chinese), 52(7): 1757-1767, doi: 10.3969/j.issn.0001-5733.2009.07.009.

    [22]

    Lin F C, Moschetti M P, Ritzwoller M H. 2008a. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophys. J. Int., 173(1): 281-298, doi: 10.1111/j.1365-246X.2008.03720.x.

    [23]

    Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophys. J. Int., 173(1): 281-298, doi: 10.1111/j.1365-246X.2008.03720.x.

    [24]

    Lin F C, Ritzwoller M H, Yang Y J, et al. 2011. Complex and variable crustal and uppermost mantle seismic anisotropy in the western United States. Nature Geoscience, 4(1): 55-61, doi: 10.1038/ngeo1036.

    [25]

    Lin W, Wang Q C, Chen K. 2008b. Phanerozoic tectonics of South China block: New insights from the polyphase deformation in the Yunkai massif. Tectonics, 27(6), doi: 10.1029/2007TC002207.

    [26]

    Ling M X, Wang F Y, Ding X, et al. 2009. Cretaceous ridge subduction along the lower Yangtze River belt, eastern China. Economic Geology, 104(2): 303-321.

    [27]

    Luo Y H, Xu Y X, Yang Y J. 2012. Crustal structure beneath the Dabie orogenic belt from ambient noise tomography. Earth and Planetary Science Letters, 313-314: 12-22.

    [28]

    Luo Y H, Xu Y X, Yang Y J. 2013. Crustal radial anisotropy beneath the Dabie orogenic belt from ambient noise tomography. Geophys. J. Int., 195(2): 1149-1164.

    [29]

    Lü Q T, Hou Z Q, Yang Z, et al. 2005. Underplating in the Middle-Lower Yangtze Valley and model of geodynamic evolution: constraints from geophysical data. Science in China, Series D: Earth Sciences, 48(7): 985-999.

    [30]

    Lü Q T, Yang Z S, Yan J Y, et al. 2007. The metallogenic potential, prospecting idea and primary attempt in depth of the ore belt of the Middle and Lower Reach of the Yangtze River: A case study of Tongling ore district. Acta Geologica Sinica (in Chinese), 81(7): 865-881.

    [31]

    Lü Q T, Yan J Y, Shi D N, et al. 2013. Reflection seismic imaging of the Lujiang-Zongyang volcanic basin, Yangtze Metallogenic Belt: An insight into the crustal structure and geodynamics of an ore district. Tectonophysics, 606: 60-77, doi: 10.1016/j.tecto.2013.04.

    [32]

    Lü Q T, Dong S W, Shi D N, et al. 2014. Lithosphere architecture and geodynamic model of Middle and Lower Reaches of Yangtze Metallogenic Belt: A review from SinoProbe. Acta Petrologica Sinica (in Chinese), 30(4): 889-906.

    [33]

    Mao J W, Wang Y T, Lehmann B, et al. 2006. Molybdenite Re-Os and albite40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications. Ore Geology Reviews, 29(3-4): 307-324.

    [34]

    Meng Q R. 2003. What drove late Mesozoic extension of the northern China-Mongolia tract?. Tectonophysics, 369(3-4): 155-174, doi: 10.1016/S0040-1951(03)00195-1.

    [35]

    Montagner J P. 1998. Where can seismic anisotropy be detected in the Earth's mantle? In boundary layers…. // Geodynamics of Lithosphere & Earth's Mantle. Basel: Birkhäuser Basel, 223-256.

    [36]

    Moschetti M P, Ritzwoller M H, Lin F C, et al. 2010a. Crustal shear wave velocity structure of the western Unites States inferred from ambient seismic noise and earthquake data. J. Geophys. Res., 115: B10306, doi: 10.1029/2010JB007448.

    [37]

    Moschetti M P, Ritzwoller M H, Lin F, et al. 2010b. Seismic evidence for widespread western-US deep-crustal deformation caused by extension. Nature, 464(7290): 885-889.

    [38]

    Nishizawa O, Yoshitno T. 2001. Seismic velocity anisotropy in mica-rich rocks: an inclusion model. Geophysical Journal International, 145(1): 19-32.

    [39]

    Ouyang L B, Li H Y, Lü Q T, et al. 2014. Crustal and uppermost mantle velocity structure and its relationship with the formation of ore districts in the Middle-Lower Yangtze River region. Earth and Planetary Science Letters, 408: 378-389, doi: 10.1016/j.epsl.2014.10.017.

    [40]

    Pan Y M, Dong P. 1999. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China: intrusion- and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews, 15(4): 177-242.

    [41]

    Peng Y J, Huang Z X, Su W, et al. 2007. Anisotropy in crust and upper mantle beneath China continent and its adjacent seas. Chinese J. Geophys. (in Chinese), 50(3): 752-759.

    [42]

    Qiu H J, Xu Z Q, Qiao D W. 2006. Progress in the study of the tectonic evolution of the Subei basin, Jiangsu, China. Geological Bulletin of China, 25(9-10): 1117-1120.

    [43]

    Ren J Y, Tamaki K, Li S T, et al. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics, 344(3-4): 175-205.

    [44]

    Shapiro N M, Ritzwoller M H, Molnar P, et al. 2004. Thinning and flow of Tibetan crust constrained by seismic anisotropy. Science, 305(5681): 233-236.

    [45]

    Shi D N, Lü Q T, Xu W Y, et al. 2013. Crustal structure beneath the middle-lower Yangtze metallogenic belt in East China: Constraints from passive source seismic experiment on the Mesozoic intra-continental mineralization. Tectonophysics, 606: 48-59.

    [46]

    Wang B J. 2006. The structural envolution and favorable exploration areas in Jianghan basin[Ph.D. thesis] (in Chinese). Beijing: China University of Geosciences (Beijing).

    [47]

    Wang Y. 2006. The onset of the Tan-Lu fault movement in eastern China: constraints from zircon (SHRIMP) and 40Ar/39Ar dating. Terra Nova, 18(6): 423-431.

    [48]

    Wang Y S, Wang H F, Sheng Y, et al. 2014. Early Cretaceous uplift history of the Dabie orogenic belt: Evidence from pluton emplacement depths. Science China Earth Sciences, 57(5): 1129-1140, doi: 10.1007/s11430-013-4659-5.

    [49]

    Weiss T, Siegesmund S, Rabbel W, et al. 1999. Seismic velocities and anisotropy of the lower continental crust: a review. Pure and Applied Geophysics, 156(1-2): 97-122, doi: 10.1007/s000240050291.

    [50]

    Wu F Y, Lin J Q, Wilde S A, et al. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters, 233(1-2): 103-119, doi: 10.1016/j.epsl.2005.02.019.

    [51]

    Xie J Y, Ritzwoller M H, Shen W S, et al. 2013. Crustal radial anisotropy across Eastern Tibet and the Western Yangtze Craton. J. Geophys. Res.: Solid Earth, 118(8): 4226-4252, doi: 10.1002/jgrb.50296.

    [52]

    Yang P X, Gao Z W, Zhang J. 2009. Structure model and evolution of the Jianghan basin and relation with moderate to strong earthquakes. Earthquake (in Chinese), 29(4): 123-130.

    [53]

    Yang Y J, Ritzwoller M H, Levshin A L, et al. 2007. Ambient noise Rayleigh wave tomography across Europe. Geophysical Journal International, 168(1): 259-274.

    [54]

    Ye Q D. 2014. Ambient noise tomography in Dabie-Sulu region and locating the microearthquakes near the Wenchuan Fault Scientific Drilling[Ph. D. thesis] (in Chinese). Beijing: Institute Geophysics of China Earthquake Administration.

    [55]

    Yi G X, Yao H J, Zhu J S, et al. 2010. Lithospheric deformation of continental China from Rayleigh wave azimuthal anisotropy. Chinese J. Geophys. (in Chinese), 53(2): 256-268, doi: 10.3969/j.issn.0001-5733.2010.02.004.

    [56]

    Zhang R Y, Liou J G, Ernst W G. 2009. The Dabie-Sulu continental collision zone: a comprehensive review. Gondwana Research, 16(1): 1-26.

    [57]

    Zhang Y Q, Dong S W, Li J H, et al. 2012. The new progress in the study of mesozoic tectonics of South China. Acta Geoscientia Sinica (in Chinese), 33(3): 257-279.

    [58]

    Zhang Y Q, Lü Q T, Teng J W, et al. 2014. Discussion on the crustal density structure and deep mineralization background in the Middle-Lower Yangtze metallogenic belt and its surrounding areas: Constraints from the gravity inversion. Acta Petrologica Sinica (in Chinese), 30(4): 931-940.

    [59]

    Zhang Z J, Xu Z H. 2013. Seismology encyclopedic knowledge (five)—Seismic anisotropy. Recent Developments in World Seismology (in Chinese), (6): 34-41.

    [60]

    Zheng T Y, Zhao L, He Y M, et al. 2014. Seismic imaging of crustal reworking and lithospheric modification in eastern China. Geophysical Journal International, 196(2): 656-670.

    [61]

    Zheng Y F, Fu B, Gong B, et al. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime. Earth Science Reviews, 62(1-2): 105-161.

    [62]

    Zhu G, Xie C L, Chen W, et al. 2010. Evolution of the Hongzhen metamorphic core complex: Evidence for Early Cretaceous extension in the eastern Yangzte craton, eastern China. Geological Society of America Bulletin, 122(3-4): 506-516.

    [63]

    常印佛, 刘湘培, 吴言昌. 1991. 长江中下游铜铁成矿带. 北京: 地质出版社, 1-239.

    [64]

    董树文, 马立成, 刘刚等. 2011. 论长江中下游成矿动力学. 地质学报, 85(5): 612-625.

    [65]

    郭飚, 刘启元, 陈九辉等. 2012. 中国大陆及邻区上地幔P波各向异性结构. 地球物理学报, 55(12): 4106-4115, doi: 10.6038/j.issn.0001-5733.2012.12.023.

    [66]

    李永华, 吴庆举, 张瑞青等. 2009. 用面波方法研究上扬子克拉通壳幔速度结构. 地球物理学报, 52(7): 1757-1767, doi: 10.3969/j.issn.0001-5733.2009.07.009.

    [67]

    吕庆田, 杨竹森, 严加永等. 2007. 长江中下游成矿带深部成矿潜力、找矿思路与初步尝试——以铜陵矿集区为实例. 地质学报, 81(7): 865-881.

    [68]

    吕庆田, 董树文, 史大年等. 2014. 长江中下游成矿带岩石圈结构与成矿动力学模型: 深部探测(SinoProbe)综述. 岩石学报, 30(4): 889-906.

    [69]

    彭艳菊, 黄忠贤, 苏伟等. 2007. 中国大陆及邻区海域地壳上地幔各向异性研究. 地球物理学报, 50(3): 752-759.

    [70]

    邱海峻, 许志琴, 乔德武. 2006. 苏北盆地构造演化研究进展. 地质通报, 25(9-10): 1117-1120.

    [71]

    王必金. 2006. 江汉盆地构造演化与勘探方向[博士论文]. 北京: 中国地质大学(北京).

    [72]

    王勇生, 王海峰, 盛勇等. 2014. 大别造山带早白垩世抬升演化研究——来自岩体侵位深度的证据. 中国科学: 地球科学, 44(2): 200-212.

    [73]

    杨攀新, 高战武, 张俊. 2009. 江汉盆地构造模式和演化及其与中强地震关系研究. 地震, 29(4): 123-130.

    [74]

    叶庆东. 2014. 大别苏鲁地区背景噪声成像与汶川地震科学钻探井孔附近微震定位[博士论文]. 北京: 中国地震局地球物理研究所.

    [75]

    易桂喜, 姚华建, 朱介寿等. 2010. 用Rayleigh面波方位各向异性研究中国大陆岩石圈形变特征. 地球物理学报, 53(2): 256-268, doi: 10.3969/j.issn.0001-5733.2010.02.004.

    [76]

    张岳桥, 董树文, 李建华等. 2012. 华南中生代大地构造研究新进展. 地球学报, 33(3): 257-279.

    [77]

    张永谦, 吕庆田, 滕吉文等. 2014. 长江中下游及邻区的地壳密度结构与深部成矿背景探讨——来自重力学的约束. 岩石学报, 30(4): 931-940.

    [78]

    张忠杰, 许忠淮. 2013. 地震学百科知识(五)——地震各向异性. 国际地震动态, (6): 34-41.

  • 加载中
计量
  • 文章访问数:  1509
  • PDF下载数:  3562
  • 施引文献:  0
出版历程
收稿日期:  2015-05-16
修回日期:  2015-10-22
上线日期:  2015-12-20

目录