台风“梅花”诱发平流层重力波的数值模拟与AIRS观测

洪军, 姚志刚, 韩志刚, 赵增亮, 方涵先. 台风“梅花”诱发平流层重力波的数值模拟与AIRS观测[J]. 地球物理学报, 2015, 58(7): 2283-2293, doi: 10.6038/cjg20150707
引用本文: 洪军, 姚志刚, 韩志刚, 赵增亮, 方涵先. 台风“梅花”诱发平流层重力波的数值模拟与AIRS观测[J]. 地球物理学报, 2015, 58(7): 2283-2293, doi: 10.6038/cjg20150707
HONG Jun, YAO Zhi-Gang, HAN Zhi-Gang, ZHAO Zeng-Liang, FANG Han-Xian. Numerical simulations and AIRS observations of stratospheric gravity waves induced by the Typhoon Muifa[J]. Chinese Journal of Geophysics (in Chinese), 2015, 58(7): 2283-2293, doi: 10.6038/cjg20150707
Citation: HONG Jun, YAO Zhi-Gang, HAN Zhi-Gang, ZHAO Zeng-Liang, FANG Han-Xian. Numerical simulations and AIRS observations of stratospheric gravity waves induced by the Typhoon Muifa[J]. Chinese Journal of Geophysics (in Chinese), 2015, 58(7): 2283-2293, doi: 10.6038/cjg20150707

台风“梅花”诱发平流层重力波的数值模拟与AIRS观测

详细信息
    作者简介:

    洪军,男,1989年生,硕士研究生,主要从事平流层重力波的数值模拟与分析研究.E-mail: 505673726@qq.com

  • 中图分类号: P401;P405;P407

Numerical simulations and AIRS observations of stratospheric gravity waves induced by the Typhoon Muifa

  • 为了分析台风这类强对流诱发平流层重力波的过程,本文利用中尺度数值模式WRF-ARW(V3.5)和卫星高光谱红外大气探测器AIRS数据对2011年第9号强热带气旋"梅花"的重力波特征进行了分析.首先,针对模式输出的垂直速度场资料的分析表明,台风在对流层各个方向上几乎都具有诱发重力波的能量,而在平流层内则呈现出只集中于台风中心以东的半圆弧状波动,且重力波到达平流层后其影响的水平范围可达1000 km.此外,平流层波动与对流层雨带在形态、位置以及尺度上均具有一定的相似性.其次,对风场的分析结果表明,不同高度上波动形态的差异主要是由于重力波垂直上传的过程中受到了平流层向西传的背景风场以及风切变的调制作用,揭示了重力波逆着背景流垂直上传的特征.随后,基于FFT波谱分析的结果表明,"梅花"诱发的平流层重力波水平波长中心值达到了1000 km,周期在15~25 h,垂直波长主要在8~12 km.最后,利用AIRS观测资料分析了平流层30~40 km高度上的大气波动,得到了与数值模拟结果相一致的半圆弧状波动.对比结果也验证了WRF对台风诱发平流层重力波的波动形态、传播方向、不同时刻扰动强度的变化以及影响范围的模拟效果.此外,也揭示了多资料的结合对比有助于更加全面地了解台风诱发平流层重力波的波动特征.
  • 加载中
  • [1]

    Anthes R A. 1972. Development of asymmetries in a three-dimensional numerical model of the tropical cyclone. Mon. Wea. Rev., 100(6): 461-476.

    [2]

    Beres H J, Joan Alexander M, Holton J R. 2002. Effects of tropospheric wind shear on the spectrum of convectively generated gravity waves. J. Atmos. Sci., 59(11): 1805-1824.

    [3]

    Beres J H, Alexander M J, Holton J R. 2004. A method of specifying the gravity wave spectrum above convection based on latent heating properties and background wind. J. Atmos. Sci., 61(3): 324-337.

    [4]

    Cao X G, Wang H, Liu X B. 2013. Analysis on the turning and forecast of super typhoon Muifa. Torrential Rain and Disasters (in Chinese), 32(2): 151-157.

    [5]

    Chane-Ming F, Roff G, Robert L, et al. 2002. Gravity wave characteristics over Tromelin Island during the passage of cyclone Hudah. Geophys. Res. Lett., 29(6): 18-1-18-4, doi: 10.1029/2001GL013286.

    [6]

    Chen D, Chen Z Y, Lü D R. 2012. Simulation of the stratospheric gravity waves generated by the Typhoon Masta in 2005. Science China Earth Sciences, 55(4): 602-610, doi: 10.1007/s11430-011-4303-1.

    [7]

    Chen D, Chen Z Y, Lü D R. 2013. Spatiotemporal spectrum and momentum flux of the stratospheric gravity waves generated by a typhoon. Science China: Earth Sciences, 56(1): 54-62, doi: 10.1007/s11430-012-4502-4.

    [8]

    Choi H J, Chun H Y, Gong J, et al. 2012. Comparison of gravity wave temperature variances from ray-based spectral parameterization of convective gravity wave drag with AIRS observations. J. Geophys. Res., 117: D05115, doi: 10.1029/2011JD016900.

    [9]

    Chun H Y, Baik J J. 1998. Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J. Atmos. Sci., 55(21): 3299-3310.

    [10]

    Dudhia J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimension model. J. Atmos. Sci., 46(20): 3077-3107.

    [11]

    Hoffmann L, Alexander M J. 2010. Occurrence frequency of convective gravity waves during the North American thunderstorm season. J. Geophys. Res., 115: D20111, doi: 10.1029/2010JD014401.

    [12]

    Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134(9): 2318-2341.

    [13]

    Kain J S. 2004. The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43(1): 170-181.

    [14]

    Kim S Y, Chun H Y, Baik J J. 2005. A numerical study of gravity waves induced by convection associated with Typhoon Rusa. Geophys. Res. Lett., 32: L24816, doi: 10.1029/2005GL024662.

    [15]

    Kim S Y, Chun H Y, Wu D L. 2009. A study on stratospheric gravity waves generated by Typhoon Ewiniar: Numerical simulations and satellite observations. J. Geophys. Res., 114: D22104, doi: 10./2009JD011971.

    [16]

    Kuester M A, Alexander M J, Ray E A. 2008. A model study of gravity waves over Hurricane Humberto (2001). J. Atmos. Sci., 65(10): 3231-3246.

    [17]

    Kurihara Y, Tuleya R E. 1974. Structure of a tropical cyclone developed in a three-dimensional numerical simulation model. J. Atmos. Sci., 31(4): 893-919.

    [18]

    Kurihara Y. 1976. On the development of spiral bands in a tropical cyclone. J. Atmos. Sci., 33(6): 940-958.

    [19]

    Lindzen R S. 1981. Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res., 86(C10): 9707-9714.

    [20]

    Liu X, Xu J Y. 2006. The nonlinearity interactions of gravity waves and different background winds. Progress in Natural Science (in Chinese), 16(11): 1436-1441.

    [21]

    Mao T, Wang J S, Yang G L, et al. 2010. Effects of typhoon Matsa on ionospheric TEC. Chinese Science Bulletin, 55(8): 712-717.

    [22]

    Mlawer E J, Taubman S J, Brown P D, et al. 1997. Radiative transfer for inhomogeneous atmosphere: RRRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14): 16663-16682.

    [23]

    Pfister L, Scott S, Loewenstein M, et al. 1993. Mesoscale disturbances in the tropical stratosphere excited by convection: observations and effects on the stratospheric momentum budget. J. Atmos. Sci., 50(8): 1058-1075.

    [24]

    Song I S, Chun H Y. 2005. Momentum flux spectrum of convectively forced internal gravity waves and its application to gravity wave drag parameterization. PartⅠ: Theory. J. Atmos. Sci., 62(1): 107-124.

    [25]

    Tepper M. 1958. A theoretical model for hurricane radar bands. //Preprints of 7th Weather Radar Conference. Miami. Amer. Meteor. Soc., 56-65.

    [26]

    Vincent R A, Joan Alexander M. 2000. Gravity waves in the tropical lower stratosphere: An observational study of seasonal and interannual variability. J. Geophys. Res., 105(D14): 17971-17982.

    [27]

    Wu D L, Preusse P, Eckermann S D, et al. 2006. Remote sounding of atmospheric gravity waves with satellite limb and nadir techniques. Advances in Space Research, 37(12): 2269-2277.

    [28]

    Xu X D, Zhang S J, Chen L S, et al. 2004. Dynamic characteristics of typhoon vortex spiral wave and its translation: a diagnostic analyses. Chinese J. Geophys. (in Chinese), 47(1): 33-41, doi: 10.3321/j.issn:0001-5733.2004.01.006.

    [29]

    Yao Z G, Zhao Z L, Han Z G. 2015. Stratospheric gravity waves during summer over East Asia derived from AIRS observations. Chinese J. Geophys. (in Chinese), 58(4): 1121-1134, doi: 10.6038/cjg20150403.

    [30]

    Yue J, Hoffmann L, Joan Alexander M. 2013. Simultaneous observations of convective gravity waves from a ground-based airglow imager and the AIRS satellite experiment. J. Geophys. Res., 118(8): 3178-3191, doi: 10.1002/jgrd.50341.

    [31]

    Zou X L, Weng F Z, Tallapragada V, et al. 2015. Satellite data assimilation of upper-level sounding channels in HWRF with two different model tops. J. Meteor. Res., 29(1): 001-027, doi: 10.1007/s13351-015-4108-9.

  • 加载中
计量
  • 文章访问数:  1058
  • PDF下载数:  2748
  • 施引文献:  0
出版历程
收稿日期:  2014-09-26
修回日期:  2015-01-21
上线日期:  2015-07-20

目录