AIRS观测的东亚夏季平流层重力波特征

姚志刚, 赵增亮, 韩志刚. AIRS观测的东亚夏季平流层重力波特征[J]. 地球物理学报, 2015, 58(4): 1121-1134, doi: 10.6038/cjg20150403
引用本文: 姚志刚, 赵增亮, 韩志刚. AIRS观测的东亚夏季平流层重力波特征[J]. 地球物理学报, 2015, 58(4): 1121-1134, doi: 10.6038/cjg20150403
YAO Zhi-Gang, ZHAO Zeng-Liang, HAN Zhi-Gang. Stratospheric gravity waves during summer over East Asia derived from AIRS observations[J]. Chinese Journal of Geophysics (in Chinese), 2015, 58(4): 1121-1134, doi: 10.6038/cjg20150403
Citation: YAO Zhi-Gang, ZHAO Zeng-Liang, HAN Zhi-Gang. Stratospheric gravity waves during summer over East Asia derived from AIRS observations[J]. Chinese Journal of Geophysics (in Chinese), 2015, 58(4): 1121-1134, doi: 10.6038/cjg20150403

AIRS观测的东亚夏季平流层重力波特征

详细信息
    作者简介:

    姚志刚,男,1978年生,博士,主要从事平流层重力波特征分析研究.E-mail:yzg_biam@163.com

    通讯作者: 赵增亮,男,1969年生,博士,主要从事大气物理学研究.E-mail:zzl@pku.org.cn
  • 中图分类号: P401;P405;P407

Stratospheric gravity waves during summer over East Asia derived from AIRS observations

More Information
  • 对流性重力波对中层大气环境有显著影响.重力波活动及重力波源的地理和季节性变化等信息是理解和模拟重力波效应的基础.卫星高光谱红外大气垂直探测器AIRS的4 μm和15 μm波段可用于识别30~40 km高度范围和41 km高度附近的重力波,其11 μm通道可同步观测对流层深对流.观测个例表明,海面和陆面上空的平流层扰动影响范围均可达1000 km,不同高度的扰动强度分布也存在差异.基于2007年6月至8月的AIRS观测资料,分析了东亚区域的对流层深对流活动和平流层的重力波,得到了深对流和重力波发生频率的水平分布.统计结果表明,东亚区域夏季夜间的深对流活动明显少于白天,但AIRS观测到的平流层重力波发生频率和扰动强度均显著大于白天,揭示了夜间对流层深对流诱发的平流层重力波在强度、范围等方面可能与白天存在显著差异.进一步对比分析表明,AIRS观测的平流层扰动高值区与深对流高值区明显不同.平流层重力波与对流层深对流之间的相关分析表明,在36°N以南的区域,41 km高度上AIRS观测的重力波中,深对流云诱发的重力波的比例约为30%~100%.在10°N至36°N区间,90%的深对流均可诱发平流层重力波.分析得到的30~40 km高度区间和41 km高度附近的重力波水平分布对比表明,后一高度上的扰动强度明显大于前一高度,且前一高度在东南亚区域存在强扰动中心而在后一高度则没有.最后,给出了AIRS观测的几种典型形态的东亚区域平流层波动,表明了该区域平流层环境波动形态的复杂性和多样性.
  • 加载中
  • [1]

    Alexander M J, Barnet C D. 2007. Using satellite observations to constrain parameterizations of gravity wave effects for global models. J. Atmos. Sci., 64(5):1652-1665.

    [2]

    Alexander M J, Beres J H, Pfister L. 2000. Tropical stratospheric gravity wave activity and relationships to clouds. J. Geophys. Res., 105(D17):22299-22309, doi:10.1029/2000JD900326.

    [3]

    Aumann H H, Gregorich D, De Souza-Machado S M. 2006. AIRS observations of deep convective clouds.//Proc. SPIE 6301, Atmospheric and Environmental Remote Sensing Data Processing and Utilization II:Perspective on Calibration/Validation Initiatives and Strategies, 63010J. San Diego, California, USA:SPIE, doi:10.1117/12.681201.

    [4]

    Bian J C, Chen H B, Lü D R. 2005. Statistics of gravity waves in the lower stratosphere over Beijing based on high vertical resolution radiosonde. Science in China Series D:Earth Sciences, 48(9):1548-1558.

    [5]

    Chane-Ming F, Roff G, Robert L, et al. 2002. Gravity wave characteristics over Tromelin Island during the passage of cyclone Hudah. Geophys. Res. Lett., 29(6):18-1—18-4, doi:10.1029/2001GL013286.

    [6]

    Chane-Ming F, Chen Z, Roux F. 2010. Analysis of gravity-waves produced by intense tropical cyclones. Ann. Geophys., 28:531-547.

    [7]

    Chen D, Chen Z Y, Lü D R. 2013. Spatiotemporal spectrum and momentum flux of the stratospheric gravity waves generated by a typhoon. Science China:Earth Sciences, 56(1):54-62, doi:10.1007/s11430-012-4502-4.

    [8]

    Chen Z Y, Lü D R. 2001. Numerical simulation on stratospheric gravity waves above mid-latitude deep convection. Adv. Space Res., 27(10):1659-1666.

    [9]

    Dutta G, Kumar M C A, Kumar P V, et al. 2009. Characteristics of high-frequency gravity waves generated by tropical deep convection:Case studies. J. Geophys. Res., 114(D18):D18109, doi:10.1029/2008JD011332.

    [10]

    Eyring V, Waugh D W, Bodeker G E, et al. 2007. Multimodel projections of stratospheric ozone in the 21st century. J. Geophys. Res., 112(D16):D16303, doi:10.1029/2006JD008332.

    [11]

    Fetzer E J, Gille J C. 1994. Gravity wave variance in LIMS temperatures. PartⅠ:Variability and comparison with background winds. J. Atmos. Sci., 51(17):2461-2483.

    [12]

    Fovell R, Durran D, Holton J R. 1992. Numerical simulations of convectively generated stratospheric gravity waves. J. Atmos. Sci., 49(16):1427-1442.

    [13]

    Fritts D C, Nastrom G D. 1992. Sources of mesoscale variability of gravity waves. Part Ⅱ:Frontal, convective and jet stream excitation. J. Atmos. Sci., 49(2):111-127.

    [14]

    Fritts D C, Alexander M J. 2003. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41(1), doi:10.1029/2001RG000106.

    [15]

    Gong J, Wu D L, Eckermann S D. 2012. Gravity wave variances and propagation derived from AIRS radiances. Atmos. Chem. Phys., 12:1701-1720.

    [16]

    Grimsdell A W, Alexander M J, May P T, et al. 2010. Model study of waves generated by convection with direct validation via satellite. J. Atmos. Sci., 67(5):1617-1631.

    [17]

    Heymsfield G M, Fulton R, Spinhirne J D. 1990. Aircraft overflight measurements of midwest severe storms:Implications an geosynchronous satellite interpretations. Monthly Weather Review, 119(2):436-456.

    [18]

    Hoffmann L, Alexander M J. 2010. Occurrence frequency of convective gravity waves during the North American thunderstorm season. J. Geophys. Res., 115(D20):D20111, doi:10.1029/2010JD014401.

    [19]

    Holton J R. 1983. The influence of gravity wave breaking on the general circulation of the middle atmosphere. J. Atmos. Sci., 40(10):2497-2507.

    [20]

    Hong J, Yao Z G, Han Z G, et al. 2015. Numerical simulations and AIRS observations of stratospheric gravity waves associated with Typhoon Muifa. Chinese Journal of Geophysics (in Chinese), in Press.

    [21]

    Kim S Y, Chun H Y, Wu D L. 2009. A study on stratospheric gravity waves generated by Typhoon Ewiniar:Numerical simulations and satellite observations. J. Geophys. Res., 114(D22):D22104, doi:10.1029/2009JD011971.

    [22]

    Kuester M A, Alexander M J, Ray E A. 2008. A model study of gravity waves over Hurricane Humberto (2001). J. Atmos. Sci., 65(10):3231-3246, doi:10.1175/2008JAS2372.1.

    [23]

    Lane T P, Sharman R D, Clark T L, et al. 2003. An investigation of turbulence generation mechanisms above deep convection. J. Atmos. Sci., 60(10):1297-1321.

    [24]

    Larsen M F, Swartz W E, Woodman R F. 1982. Gravity-wave generation by thunderstorms observed with a vertically-pointing 430 MHz radar. Geophys. Res. Lett., 9(5):571-574, doi:10.1029/GL009i005p00571.

    [25]

    Li J, Li J L, Weize E, et al. 2007. Physical retrieval of surface emissivity spectrum from hyperspectral infrared radiances. Geophys. Res. Lett., 34(16):L16812, doi:10.1029/2007GL030543.

    [26]

    Limpasuvan V, Wu D L, Alexander M J, et al. 2007. Stratospheric gravity wave simulation over Greenland during 24 January 2005. J. Geophys. Res., 112(D10):D10115, doi:10.1029/2006JD007823.

    [27]

    Lü D R, Bian J C, Chen H B, et al. 2009. Frontiers and significance of research on stratospheric processes. Advances in Earth Science (in Chinese), 24(3):221-228.

    [28]

    Nastrom G D, Fritts D C. 1992. Sources of mesoscale variability of gravity waves. PartⅠ:Topographic excitation. J. Atmos. Sci., 49(2):101-110.

    [29]

    Pfister L, Scott S, Loewenstein M, et al. 1993. Mesoscale disturbances in the tropical stratosphere excited by convection:Observations and effects on the stratospheric momentum budget. J. Atmos. Sci., 50(8):1058-1075.

    [30]

    Sato K. 1993. Small-scale wind disturbances observed by the MU radar during the passage of Typhoon Kelly. J. Atmos. Sci., 50(4):518-537.

    [31]

    Susskind J, Barnett C D, Blaisdell J M. 2003. Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens., 41(2):390-409.

    [32]

    Tsuda T, Nishida M, Rocken C, et al. 2000. A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET). J. Geophys. Res., 105(D6):7257-7273.

    [33]

    Wang X L, Chen Z Y, Lü D R, et al. 2006. Characteristics of the equatorial lower stratospheric gravity waves. Progress in Natural Science (in Chinese), 16(12):1583-1590.

    [34]

    Wu D L, Waters J W. 1996. Satellite observations of atmospheric variances:A possible indication of gravity waves. Geophys. Res. Lett., 23:3631-3634.

    [35]

    Wu D L, Zhang F Q. 2004. A study of mesoscale gravity waves over the North Atlantic with satellite observations and a mesoscale model. J. Geophys. Res., 109(D22):D22104, doi:10.1029/2004JD005090.

    [36]

    Wu D L, Preusse P, Eckermann S D, et al. 2006. Remote sounding of atmospheric gravity waves with satellite limb and nadir techniques. Adv. Space Res., 37(12):2269-2277.

    [37]

    Wu D L, Eckermann S D. 2008. Global gravity wave variances from Aura MLS:characteristics and interpretation. J. Atmos. Sci., 65(12):3695-3718.

    [38]

    Yao Z G, Li J, Han H J, et al. 2012. Asian dust height and infrared optical depth retrievals over land from hyperspectral longwave infrared radiances. J. Geophys. Res.-Atmos., 117(D19):D19202, doi:10.1029/2012JD017799.

    [39]

    Yao Z G, Li J, Weisz E, et al. 2013. Evaluation of single field-of-view cloud top height retrievals from hyperspectral infrared sounder radiances with CloudSat and CALIPSO measurements. J. Geophys. Res.-Atmos., 118(16):9182-9190, doi:10.1002/jgrd.50681.

    [40]

    Zheng Y G, Chen J, Zhu P J. 2008. MCS and its diurnal variation over China and its vicinity during Summer. Chinese Science Bulletin (in Chinese), 53(4):471-481.

  • 加载中
计量
  • 文章访问数:  840
  • PDF下载数:  2216
  • 施引文献:  0
出版历程
收稿日期:  2014-03-24
修回日期:  2014-12-30
上线日期:  2015-04-20

目录