基于地形精化的金星重力场模型VGM2013

徐璐媛, 李斐, 鄢建国. 基于地形精化的金星重力场模型VGM2013[J]. 地球物理学报, 2014, 57(8): 2484-2494, doi: 10.6038/cjg20140810
引用本文: 徐璐媛, 李斐, 鄢建国. 基于地形精化的金星重力场模型VGM2013[J]. 地球物理学报, 2014, 57(8): 2484-2494, doi: 10.6038/cjg20140810
XU Lu-Yuan, LI Fei, YAN Jian-Guo. A gravity field model of Venus based on refined topography:VGM2013[J]. Chinese Journal of Geophysics (in Chinese), 2014, 57(8): 2484-2494, doi: 10.6038/cjg20140810
Citation: XU Lu-Yuan, LI Fei, YAN Jian-Guo. A gravity field model of Venus based on refined topography:VGM2013[J]. Chinese Journal of Geophysics (in Chinese), 2014, 57(8): 2484-2494, doi: 10.6038/cjg20140810

基于地形精化的金星重力场模型VGM2013

详细信息
    作者简介:

    徐璐媛,女,1989年生,在读硕士,主要从事行星内部构造及重力场方面的研究工作.E-mail:luyuanxu@whu.edu.cn

    通讯作者: 李斐,男,1960年生,教授,博导,主要从事物理大地测量方面的研究与教学工作.E-mail:fli@whu.edu.cn
  • 中图分类号: P223

A gravity field model of Venus based on refined topography:VGM2013

More Information
  • 高精度金星重力场的获取,是金星探测的重要内容.本文利用最新的金星地形和重力模型,通过高通滤波后的残差地形(RTM)并在考虑均衡改正的情况下改进了重力的短波成分,最终提出了一个新的金星重力模型VGM2013,该模型赤道分辨率达10 km量级,大大高于现有的金星重力场模型,最终结果是金星表面重力加速度和重力扰动.研究中同时发现金星在Airy-Heiskanen均衡模型下的全球最优补偿深度为30 km,金星地壳的密度可能小于当前认为的2700~2900 kg·m-3.VGM2013模型的结果可为将来的金星探测器定轨和着陆导航提供参考,作为重力计算的先验模型.但由于该模型没有包含短波重力观测信息,不建议直接用于更小尺度的地质和地球物理解释.
  • 加载中
  • [1]

    Banerdt W B. 1986. Support of long-wavelength loads on Venus and implications for internal structure. Journal of Geophysical Research, 91(B1): 403-419.

    [2]

    Basilevsky A T, Head J W. 2007. Beta Regio, Venus: Evidence for uplift, rifting, and volcanism due to a mantle plume. Icarus, 192(1): 167-186.

    [3]

    Driscoll J R, Healy D M. 1994. Computing Fourier transforms and convolutions on the 2-sphere. Advances in Applied Mathematics, 15(2): 202-250.

    [4]

    Forsberg R, Tscherning C C. 1981. The use of height data in gravity field approximation by collocation. Journal of Geophysical Research, 86(B9): 7843-7854.

    [5]

    Forsberg R. 1984. A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling (No.OSU/DGSS-355). Department of Geodetic Science and Surveying, Ohio State University, Columbus.

    [6]

    Grimm R E, Hess P C. 1997. The Crust of Venus.//Venus II. Tucson: Univ. of Arizona Press.

    [7]

    Hirt C. 2010. Prediction of vertical deflections from high-degree spherical harmonic synthesis and residual terrain model data. Journal of Geodesy, 84(3): 179-190.

    [8]

    Hirt C, Featherstone W E. 2012. A 1.5 km-resolution gravity field model of the Moon. Earth and Planetary Science Letters, 329-330: 22-30.

    [9]

    Hirt C, Claessens S J, Kuhn M, et al. 2012. Kilometer-resolution gravity field of Mars: MGM2011. Planetary and Space Science, 67(1): 147-154.

    [10]

    James P B, Zuber M T, Phillips R J. 2013. Crustal thickness and support of topography on Venus. Journal of Geophysical Research: Planets, 118(4): 859-875.

    [11]

    Konopliv A S, Sjogren W L, Yoder C F, et al. 1996. Venus 120th degree and order gravity field.//1996 AGU Fall Meeting, San Francisco, CA.

    [12]

    Konopliv A S, Banerdt W B, Sjogren W L. 1999. Venus gravity: 180th degree and order model. Icarus, 139(1): 3-18.

    [13]

    Kucinskas A B, Turcotte D L. 1994. Isostatic compensation of equatorial highlands on Venus. Icarus, 112(1): 104-116.

    [14]

    Kucinskas A B, Turcotte D L, Arkani-Hamed J. 1996. Isostatic compensation of Ishtar Terra, Venus. Journal of Geophysical Research, 101(E2): 4725-4736.

    [15]

    McNamee J B, Kronschnabl G R, Wong S K, et al. 1992. A gravity field to support Magellan navigation and science at Venus. J. Astron. Sci., 40(1): 107-134.

    [16]

    Nagy D, Papp G, Benedek J. 2000. The gravitational potential and its derivatives for the prism. Journal of Geodesy, 74(7-8): 552-560.

    [17]

    Rappaport N J, Konopliv A S, Kucinskas A B, et al. 1999. An improved 360 degree and order model of Venus topography. Icarus, 139(1): 19-31.

    [18]

    Rummel R, Rapp R H, Sunkel H, et al. 1988. Comparisons of global topographic/isostatic models to the Earth's observed gravity field. Geod. Sci., Ohio State Univ., Columbus.

    [19]

    Senske D A, Head J W. 1992. Atla Regio, Venus: Geology and origin of a major equatorial volcanic rise. Proceedings of Lunar and Planetary Science, 789: 107-109.

    [20]

    Sjogren W L, Banerdt W B, Chodas P W, et al. 1997. The Venus gravity field and other geodetic parameters.//Venus II. Tucson: Univ. of Arizona Press, 1125-1161.

    [21]

    Solomon S C, Head J W. 1991. Fundamental issues in the geology and geophysics of Venus. Science, 252(5003): 252-260.

    [22]

    Torge W. 2001. Geodesy, 3rd ed. Berlin: Gruyter.

    [23]

    Wieczorek M A. 2007. 10.05-Gravity and topography of the terrestrial planets.//Treatise on Geophysics. Oxford: Elsevier-Pergamon.

    [24]

    Zolotov M Y, Volkov V P. 1992. Chemical processes on the planetary surface.//Venus Geology, Geochemistry and Geophysics: Research Results from the Soviet Union. Tucson: Univ. of Arizona Press.

  • 加载中
计量
  • 文章访问数:  983
  • PDF下载数:  2702
  • 施引文献:  0
出版历程
收稿日期:  2013-09-22
修回日期:  2014-05-07
上线日期:  2014-08-20

目录